

Modelování přírodních katastrof

Jiří Potužil UNIQA pojišťovna a.s. 8.12.2017

Agenda

Basic concepts of natcat models

• Exposure, hazard, vulnerability, loss (financial module)

Know the peril

- Flood
- Hail
- Windstorm
- Earthquake

Model validation

NatCat risk under Solvency II

• Why is the Solvency II standard formula wrong?

Using materials from NatCat Competence Center, UNIQA Re AG

Role of Nat Cat models in (Re)Insurance

Focus SCOR, December 2012

Catastrophe models are the Swiss-army knives in the Cat Risk Management survival kit – performing multiple functions for insurers including: pricing & risk acceptance decision support, portfolio accumulation management, capital modelling and business planning. Their use is widespread, and they have shaped the very language and framework with which the industry measures and communicates the direct financial risks associated with major natural disasters – and more latterly for man-made disasters too. The events of 2011 and 2012 have given us all pause for thought, and to question whether these

The events of 2011 and 2012 have given us all pause for thought, and to question whether these simplified mathematical representations of the destruction potential of incredibly complex natural phenomena will ever be rich enough to adequately capture the myriad uncertainties that lie in wait ready to produce the next "surprise" event: whether levee failure, record surge/cloudburst flooding, nuclear incident, tsunami, regional blackout or political intervention, let alone be sophisticated enough to effectively couple and model dependencies that invariably exist due to large scale weather patterns like El Niño, or the relationship between Property and Agriculture lines of business weather risks.

Nat Cat Model = Simplification of a complex random event

History of NatCat models

History of NatCat models

In the meantime, somewhere else.....

James David Forbes (1809 –1868) Scottish Physicist

Forbes' seismometer (1844)

Thomas' Romney Robinson anemometer (1846)

History of NatCat models

1992- Hurricane Andrew in Florida

- \$27.3 billion (in 2017 dollars)
- 9 insurers insolvent
- More sophisticated modeling approach needed

...and in Czech Republic

2002 - Floods in Bohemia 2002 - 2003 Development of the first flood model

Structure of NatCat Models

To sum up

 \triangle Difficulty in obtaining the information \neq difficulty in understanding the model

Model Vendors

<u>AIR Worldwide</u> Founded in 1987 in Boston http://www.air-worldwide.com

<u>Risk Management Solutions (RMS)</u> Founded in 1988 at Stanford University http://www.rms.com

<u>CoreLogic (EQECAT)</u> EQECAT Founded in 1994 in San Francisco http://www.eqecat.com

Impact Forecasting

Aon Benfield's catastrophe model development http://www.impactforecasting.com

Willis Re

(Willis Towers Watson) http://www.willisre.com

... and others

IMPACT FORECASTING, L.L.C.

WillisTowersWatson III'I'III

Empower Results

ID	Postal Code	Address (Street, no, City)	Latitude	Longitude	LoB	Building/ content	#Risks	Sum insured

Policy Limit	Deductible absolute	Deductible In % of loss	Occupancy	Number of Stories	Year Build	Basement	Construction	Roof type

Data quality is essential

- More detailed data = more representative view of risk
- Importance of geocoding depends on peril and model resolution
- What is the location of motor business policies, especially fleet
- Multilocations

Hazard and Vulnerability modules

Will an event happen? If so how big will it be?

→ Primary Uncertainty

Given that an event happened (conditional probability) what is the amount of damage it has caused?

→ Secondary Uncertainty

Event data collection

de Epic Latitude ? 32.90	center Longitude ? -117.80	San Diego/San Juan Capitation Capital	Loss of Life and Property Data not available, but shook northern California, Oregon, Washington, and southern British Columbia; caused tsunami damage to villages in Japan and western US Damaged adobe walls of missions in San
? 32.90	? -117.80	Offshore, somewhere between Cape Mendocino and Canada San Diego/San Juan Capistrano region	Data not available, but shook northern California, Oregon, Washington, and southern British Columbia; caused tsunami damage to villages in Japan and western US Damaged adobe walls of missions in San Diana and Dan wea
32.90	-117.80	San Diego/San Juan Capistrano region	Damaged adobe walls of missions in San
			Capistrano
34.37	-117.65	Wrightwood	40 dead at
34.75	-118.60	Los Angeles, Ventura, Santa Barbara	1 dead
36.90	-121.50	Near San Juan Bautista	[Older reports reported this quake as possibly larger and centered
37.30?	-122.15	San Francisco to	Damage to
		San Juan Bautista	San Francisco and Santa Clara
32.50	-115	Near Fort Yuma, Arizona	
36.20	-120.80	Great Fort Tejon earthquake	1 dead; damage from Monterey to San Bernardino County
39.50	-119.50	Carson City	,
37.20	-121.90	Santa Cruz Mountains	\$0.5 million in property damage
37.70	-122.10	Hayward Fault	30 dead; \$350,000 in property damage
	34.75 36.90 37.30? 32.50 36.20 39.50 37.20 37.70	34.76 -118.60 36.90 -121.50 37.307 -122.15 32.50 -115 36.20 -120.80 39.50 -119.50 37.20 -121.90 37.70 -122.10	34.75 -118.60 Los Angeles, Ventura, Santa Barbara 36.90 -121.50 Near San Juan Bautista 37.30? -122.15 San Francisco to San Juan Bautista 32.50 -115 Near Fort Yuma, Arizona 36.20 -120.80 Great Fort Tejon earthquake 39.50 -119.50 Carson City 37.20 -122.10 Hayward Fault

http://www.consrv.ca.gov/cgs/rghm/quakes /Pages/eq_chron.aspx

→ Historical catalogue

...

Hazard Module

Geological information Hydrological information Meteorological information

Research Stochastic sampling Global circulation models Hydrodynamic models Digital terain models

Hazard module

Natural Catastrophes

WINDSTORM

- Large territories affected
- Low damage: serious structural damage is rare (destruction of walls, failure of buildings, etc)
- Low number of casualties
- Multi-country losses in Europe

EARTHQUAKE

- Small territories affected
- Usually only single country losses
- Damaging earthquakes are less frequent than
- floods and windstorms.
- High damage: serious structural damage (failure of walls, collapse of buildings, etc)
- Usually high number of casualties

<u>FLOOD</u>

- Flood propagates along river streams and cannot affect large areas continuously
- Lower damage: serious structural damage is not common
- Low number of casualties
- Multi-country losses in Europe
- Loss prevention can be very effective (e.g. flood defences, early warning)

<u>Hail</u>

- Localised events
- Higher frequency
- High share of motor hull losses

Loss Parameters

Converts physical characteristics of an event into loss amount

Different vulnerability functions for Line of business, Occupancy...

- Building / content / motor
- Residential / Commercial / Industrial / Agricultural
- Building type, construction, year built, roof type etc. (secondary modifiers)

Data sources

- Claims
- Governments
- Field visits after an event
- Not enough data for most of the perils
 - \rightarrow engineering analyses

The data in the vulnerability module represent most of the intellectual property of the model vendors

Vulnerability module - secondary uncertainty

Vulnerability function not deterministic

Often beta distribution for each hazard intensity

In reality not all risks exposed to hazard claim a loss

- Conditional approach to loss calculation
- Chance of loss (for given hazard intensity) = P(Loss>0)

 Damage Ratio Distribution allowing for the all the different values of damage ratio surrounding the mean damage

Niigata Earthquake, 1964, Source: Wikimedia commons

Financial module

Policy conditions are applied

- limits, deductibles
- per coverage, location, policy

If model includes secondary uncertainty then it calculates for each event in the event set a combined loss distribution of all buildings using convolution process

EP (Exceedance Prabability) curve

- = P(loss > x)
- OEP = Occurence Exceedance Prabability
- AEP = Annual Exceedance Prabability Poisson distribution usually assumed for event frequency

ELT = Event Loss Tables YLT = Year Loss Tables

AAL = Average Annual Loss

Event ID	Frequency	Mean Loss	Standard Deviation
20038	0.000043	363	852
20174	0.000033	493	1 383
20175	0.000033	10 375	17 033
20176	0.000033	28 691	46 487
20177	0.000033	33 077	49 531
20178	0.000030	39 775	42 645
20179	0.000030	18 479	34 172
20181	0.000027	179	454
20336	0.000027	4 057	8 948
20337	0.000027	47 264	47 341

sample ELT

Flood models

6000

5000

4000

3000

2000

1000

α_k [m³.s⁻¹]

- Fluvial (riverine) flooding flood plain & off-flood plain
 - Winter type
 - Summer type
- Pluvial flooding (Cloudbursts, flash floods)
- Storm surge, Tsunami

Floods exceeding the 2-year maximum peak discharge of 1090 m3/s on the River Vltava in Prague during the period 1825–2003, taking into consideration their N-year return period and occurrence during the winter) and summer hydrological half-years (ZHP — November–April, LHP — May–October)

Source: Rudolf Brázdil et al., Historical and recent floods in the Czech Republic, 2005

2002 floods reported claims (source: Impact Forecasting)

Flood models - Digital Terrain Model

DTM -> Flow direction -> Flow Routing -> River Network delimitation -> Vectorized and oriented river network with geometric network topology (source: Impact Forecasting)

Flood models - event sets generation

Gauging stations data based

- Gauging stations data
- Statistical dependency model

Global Climate Model (GCM) based

- Stochastic GCM simulation
- Output downscaling/corrections
- Rainfall-runoff processing

2D Finite differences numerical model

- Describing real physical behavior of flowing water
- Depth and velocities are calculated in each point
- Simulation accuracy driven by DTM and hydrological data

http://www.tuflow.com/

Shallow water equations

 $\frac{\partial \zeta}{\partial t} + \frac{\partial (Hu)}{\partial x} + \frac{\partial (Hv)}{\partial y} = 0$ (2D Continuity)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - c_f v + g \frac{\partial \zeta}{\partial x} + g u \left(\frac{n^2}{H^{\frac{4}{3}}} + \frac{f_l}{2g\Delta x}\right) \sqrt{u^2 + v^2} - \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + \frac{1}{\rho} \frac{\partial p}{\partial x} = F_x$$

(X Momentum)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + c_f u + g \frac{\partial \zeta}{\partial y} + g v \left(\frac{n^2}{H^{\frac{4}{3}}} + \frac{f_l}{2g\Delta y}\right) \sqrt{u^2 + v^2} - \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) + \frac{1}{\rho} \frac{\partial p}{\partial y} = F_y$$

(Y Momentum), Stelling, G.S. (1984):

On the Construction of Computational Methods for Shallow Water Flow Problems. Rijkswaterstaat Communications, no. 35/1984, The Hague, The Netherlands

Dykes and levees

usually included in DTM

Reservoirs and dry polders

 analysis of gauging stations data is there a breakpoint matching date of reservoir construction?

Mobile flood protection and walls

- exact characteristics of the defence structure often not available
- therefore not possible to be implemented in DTM and flood extents modeling
- protected areas
 based on standard of protection

Flood defence failure ?

stochastic or scenario?

Windstorm models - windstorms in Europe

Winter storms - Extratropical cyclones

- originate in the North Atlantic basin predominantly in winter subsequently they move eastward across Europe
- large spatial scale covering thousands of square kilometers their life cycle is of about one week
- 2007 Kyrill
- 2008 Emma
- 2017 Herwart

Summer storms

- also called thunderstorms
- caused by convectional instability of the atmosphere
- damaging lifecycle 3-6 hours
- can cause severe but localized damage (10-100km)
- sometimes include hail

Development of synthetic events

- 1. method of perturbations modification of historical events
- 2. variation of initial meteorological conditions of historical events and running a Numerical Weather Prediction (NWP) model
- 3. using Global Circulation model (GCM) as base

Hail models

Hailstorms

- Usually in summer convective thunderstorms
- Localised, narrow storm tracks typical length 10-100km
- Hail damage usually accompanied by wind, rain and lightning damage
- Series of hailstorms over several hours or few days can define one event

Hail models - historical catalogue

What is the hazard parameter - hailstone diameter or energy?

Hail measurement

Direct (On the ground)

- Hailpad networks
- News reports
- http://www.eswd.eu/

Remotely sensed (proxy) evidence

- Radar
- Lightning
- Overshooting tops temperature

15.8.2010 hailstorm track

source: Willis Re

Natural Hazards

Natural Hazards

ISSN 0921-030X Nat Hazards

Hail models - Event sets generation

A new physically based stochastic event catalog for hail in Europe

H. J. Punge, K. M. Bedka, M. Kunz & A. Werner

Based on combination of 2 data sets

- Overshooting tops signatures derived from satelite data
- ESWD database •

Sampling correlated variables:

- 2.5 x 1.5 degree grid (approx .170x170km in CEE)
- spatial frequency Poisson distribution

$$f_k(k;\nu) = \frac{\nu^k \mathrm{e}^{-\nu}}{k!}$$

length and width - generalized exponential distr. •

$$f_l(l;\lambda) = \lambda e^{-\lambda l}$$
 $f_w(w;\kappa) = \kappa e^{-\kappa w}$

- maximum hailstone size exponential distribution •
- **Orientation** normal distribution •

$$f_{\phi}(\phi; \alpha, \beta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(\phi-\alpha)^2}{\beta^2}}$$

timing within the year - normal distribution or bimodal normal distribution

Historical catalogue

- going as much as deep to the past is needed
- main source of information used to generate the stochastic event set.
- declustering (no foreshocks and aftershocks)
- homogenization
- completeness test
- zonation

year	month	day	hour	minute	latitude	longitude	depth	intensity	Morig	type	м"	M _w _err	reference
303			20		33.80	34.30	20	8.5	7.1	s	6.9		SDM
334					36.90	27.40		8	6.6	w	6.6	0.5	Pap
341					36.20	36.10			6	s	6.1		ККР
342					34.75	32.25		9			6.5		GD
344					36.30	28.30		8	6.5	w	6.5	0.5	Рар
361					37.50	14.00		10	6.6	w	6.6	0.3	CPTI04
362	5	24			31.30	35.60			6.5	s	6.5		KKP
363	5	19			31.50	35.50			7.4	S	7.2		Amb06
365	7	21			35.20	23.40			8.4	w	8.4		Sha08
370					38.10	28.90		8	6.5	w	6.5	0.5	Рар
374					38.10	15.65		9.5	6.3	w	6.3	0.2	CPTI04
375	7	12			35.60	24.80		10	7.8	w	7.8	0.5	Рар
412					37.07	10.07		10			7		IGN
417					37.20	29.90		8	6.5	w	6.5	0.5	Рар
448					31.20	34.20			6	s	6.1		KKP
419	11	6			34.80	24.80		8	7.2	w	7.2	0.5	Pap
457	9	14			36.10	36.10			6.3	s	6.3		KKP
459					36.70	27.30		9	6.6	w	6.6	0.5	Рар
476					36.40	28.30		8	6.7	w	6.7	0.5	Рар
494					38.00	29.00		8	6.6	w	6.6	0.5	Рар
494			25		35.80	36.30	25	7.5	6.5	s	6.5		SDM
500					36.20	36.10			7.2	S	7		ККР

Helmholtz-Zentrum

http://emec.gfz-potsdam.de/pub/emec_data/emec_data_frame.html

Seismic source model

predefined regions with uniform properties of seismic activity based on historical observations, geology and tectonics

Earthquake recurrence relationship

represents the relationship between magnitude and number of events (rate). Gutenberg-Richter distribution: $\log_{10} (\lambda_{nc}(m)) = a - b \cdot m$

Y represents the ground motion output parameter depends on the magnitude M of an earthquake occurring at a distance Rand $P_1, P_2, \ldots P_i$ represent the other event parameters which describe the source, the faulting mechanism, the wave propagation path, local site conditions, etc. $Y = f(M, R, P_1, P_2, \ldots P_i)$

Outputs:

Acceleration (PGA, SA)

- could capture different type of response of a building to a different period of ground-shaking
- But very rare historical records Intensity (EMS -98)
- subjective measure based on the damage
- But the historical evidence goes several centuries back

Reconstruction of Neulengbach 1590 event (source: Munich Re)

Solvency II DIRECTIVE 2009/138/EC

Article 126 External models and data

The use of a model or data obtained from a third party shall not be considered to be a justification for exemption from any of the requirements for the internal model set out in Articles 120 to 125.

Article 120 - Use test	Insurance and reinsurance undertakings
Article 121 -Statistical quality standards <	shall be able to justify the assumptions
Article 122 - Calibration standards	underlying their internal model to the
Article 123 - Profit and loss attribution	supervisory authorities.
Article 124 - Validation standards	Data used for the internal model shall
Article 125 - Documentation standards	be accurate, complete and appropriate.

But external NatCat model is often a blackbox Limited documentation available only for licensed users

Regional distribution of relative average annual loss - compare to hazard maps Stress testing - are selected extreme events from model event set plausible? Sensitivity testing - check impact on whole distribution (OEP & AEP)

- occupancy and coverage selection
- geolocation
- limits and deductibles
- secondary uncertainty on/off
- model specific features (clustering, flood defences...)

Stability testing - number of trials, (pseudo)random number generator seed

Backtesting past evens (with known event footprint)

- compare modeled and observed losses
- if current exposure data used, scaling for portfolio changes, inflation ...
- what if these losses were used for vulnerability calibration ?

Return period of past events in modelled OEP / AEP ? Godness of fit tests

- Kolmogorov-Smirnov test of observed losses (continuous distribution)
- Pearson's chi-square goodness of fit test for event frequency
- is there enough observations? Cat event threshold set-up!

COMMISSION DELEGATED REGULATION (EU) 2015/35

Article 120

Natural catastrophe risk sub-module

- 1. The natural catastrophe risk sub-module shall consist of all of the following sub-modules:
- (a) the windstorm risk sub-module;
- (b) the earthquake risk sub-module;
- (c) the flood risk sub-module;
- (d) the hail risk sub-module;
- (e) the subsidence risk sub-module.

assumed =0 in Czech Republic

2. The capital requirement for natural catastrophe risk shall be equal to the following:

$$SCR_{natCAT} = \sqrt{\sum_{i} SCR_{i}^{2}}$$

assumption of independent perils

Flood risk sub-module

1. The capital requirement for flood risk shall be equal to the following:

$$SCR_{flood} = \sqrt{(\sum_{(r,z)} CorrFL_{(r,z)} \cdot SCR_{(flood,r)} \cdot SCR_{(flood,z)}) + SCR_{(flood,other)}^2}$$

NatCat risk under Solvency II standard formula

5. For all regions set out in Annex VII, the specified flood loss in a particular region r shall be equal to the following amount:

$$L_{(flood,r)} = Q_{(flood,r)} \cdot \sqrt{\sum_{(i,j)} Corr_{(flood,r,i,j)} \cdot WSI_{(flood,r,i)} \cdot WSI_{(flood,r,j)}} \quad \longleftarrow$$

where:

- (a) Q_(flood,r) denotes the flood risk factor for region r as set out in Annex VII;
- (b) the sum includes all possible combinations of risk zones (i,j) of region r set out in Annex IX;
- (c) Corr_{(flood,r,i,j}) denotes the correlation coefficient for flood risk in flood zones i and j of region r set out in Annex XXIV;
- (d) $WSI_{(flood,r,i)}$ and $WSI_{(flood,r,j)}$ denote the weighted sums insured for flood risk in risk zones *i* and *j* of region *r* set out in Annex IX.

6. For all regions set out in Annex VII and all risk zones of those regions set out in Annex IX, the weighted sum insured for flood risk in a particular flood zone *i* of a particular region *r* shall be equal to the following:

$$WSI_{(flood,r,i)} = W_{(flood,r,i)} \cdot SI_{(flood,r,i)} \in$$

where:

(a) W_(flood,r,i) denotes the risk weight for flood risk in risk zone i of region r set out in Annex X;

(b) SI_(flood,r,i) denotes the sum insured for flood risk in flood zone i of region r.

There is an underlying assumption of an average vulnerability per perilcountry combination, as well as an average deductible and an insured to value relationship

7. For all regions set out in Annex VII and all risk zones of those regions set out in Annex IX, the sum insured for a particular flood zone *i* of a particular region *r* shall be equal to the following:

	,	It is assumed that the undertaking's non-life
$SI_{(flood,r,i)} = SI_{(property,r,i)} + SI_{(onchore-property,r,i)} + 1,5 \cdot SI_{(motor,r,t)}$	<	insurance portfolio is not focused on residential,
		commercial, industrial or agricultural.

The country factors represent the per-occurrence 99.5% loss for that peril in the country under consideration, as a ratio of the total sums insured in the country.

NatCat risk under Solvency II standard formula

- 2. For all regions set out in Annex VII, the capital requirement for flood risk in a particular region *r* shall be the larger of the following capital requirements:
- (a) the capital requirement for flood risk in region r according to scenario A as set out in paragraph 3;
- (b) the capital requirement for flood risk in region r according to scenario B as set out in paragraph 4.

3. For all regions set out in Annex VII, the capital requirement for flood risk in a particular region r according to scenario A shall be equal to the loss in basic own funds of insurance and reinsurance undertakings that would result from the following sequence of events:

- (a) an instantaneous loss of an amount that, without deduction of the amounts recoverable from reinsurance contracts and special purpose vehicles, is equal to 65 % of the specified flood loss in region *r*,
- (b) a loss of an amount that, without deduction of the amounts recoverable from reinsurance contracts and special purpose vehicles, is equal to 45 % of the specified flood loss in region *r*.

4. For all regions set out in Annex VII, the capital requirement for flood risk in a particular region r according to scenario B shall be equal to the loss in basic own funds of insurance and reinsurance undertakings that would result from the following sequence of events:

- (a) an instantaneous loss of an amount that, without deduction of the amounts recoverable from reinsurance contracts and special purpose vehicles, is equal to 100 % of the specified flood loss in region *r*;
- (b) a loss of an amount that, without deduction of the amounts recoverable from reinsurance contracts and special purpose vehicles, is equal to 10 % of the specified flood loss in region r.

 \uparrow

Assumption: 2 events as 99.5% quantile of number of flood events in a year

Sum of

these 2

scenarios

is 110%

EIOPA Guidelines on own risk and solvency assessment

Guideline 12 – Deviations from assumptions underlying the SCR calculation

1.26. The undertaking should assess whether its risk profile deviates from the assumptions underlying the SCR calculation and whether these deviations are significant. The undertaking may as a first step perform a qualitative analysis and if that indicates that the deviation is not significant, a quantitative assessment is not required.

The underlying assumptions in the standard formula for the Solvency Capital Requirement calculation chapter 4.3.1 Natural catastrophe risk

https://eiopa.europa.eu/Publications/Standards/EIOPA-14-322_Underlying_Assumptions.pdf

What about all the assumptions underlying the various external natcat models? ...and their validation?