Dynamic and Granular Loss Modeling With Copulae

[SAV 2018]

Matúš Maciak¹, Ostap Okhrin², and <u>Michal Pešta¹</u>

Prague, May 11, 2018

¹Charles University, Prague, Czech Republic ²Dresden University of Technology, Germany

FACULTY OF MATHEMATICS AND PHYSICS Charles University

1. Aims

- 2. Methodology
- 3. Results
- 4. Conclusions

Aims

- Primary: predict future claim cash flows in non-life insurance and their uncertainty
- Secondary: back-predict incurred but not reported claims due to truncated data

Aggregated vs Granular

- Pitfalls of the conventional reserving techniques:
 - loss of information from the policy and the claim's development due to the aggregation, cf. Norberg (1993)
 - usually small number of observations in the triangle
 - only few observations for recent accident years
 - sensitivity to the most recent paid claims
- How to possibly overcome the issues:
 - individual/claim-by-claim/micro-level/granular data, which do not represent a mainstream in the reserving field, e.g., Antonio & Plat (2014)

Illustration

Methodology

 The time ordered reporting dates {Z_i}_{i∈N} are arrival times of a non-homogeneous Poisson process {M(t)}_{t≥0} with a parametric intensity ψ(t; ρ) such that

$$M(t) = \sum_{i=1}^\infty \mathbb{1}\{Z_i \leq t\}$$

• The cumulative intensity $\Psi(t; \rho) := \int_0^t \psi(v; \rho) dv$ diverges if $t \to \infty$

- The reporting delays W_i 's are independent random variables
- Sequence $\{W_i\}_{i \in \mathbb{N}}$ is stochastically independent of $\{Z_i\}_{i \in \mathbb{N}}$
- Given $Z_n = z$, W_n has a parametric density $f_W(\cdot, z; \theta)$

Payment Dates

- The time ordered payment delays {U_{i,1} − Z_i, U_{i,2} − Z_i,...} of the *i*th claim are arrival times of a non-homogeneous Poisson process {N_i(t)}_{t≥0}
- $N_i(t)|W_i, Z_i$
- Processes {N_i(t)}_{t≥0}, i = 1, 2, ... are independent with a parametric intensity λ_i(t; ν, β) such that

$$N_i(t) = \sum_{k=1}^\infty \mathbb{1}\{U_{i,k} - Z_i \leq t\}$$

• The cumulative intensity $\Lambda_i(t; \nu, \beta) := \int_0^t \lambda_i(v; \nu, \beta) dv$ converges if $t \to \infty$

- Sets of the payment amounts $\{X_{ij}\}_j$'s are independent random sequences
- Sequence $\{X_{ij}\}_j$ forms an AR process
- Sequence $\{\{X_{ij}\}_j\}_{i\in\mathbb{N}}$ is stochastically independent of $\{Z_i\}_{i\in\mathbb{N}}$
- Given $Z_n = z$, the first payment X_{n1} has a parametric density $f_X(\cdot, z; \zeta)$

- Accident dates as displacement of the reporting dates
- Reporting dates are fully observed, accident dates are truncated
- The displacement theorem (Kingman, 1993) provides that accident dates T_i 's are arrival times of another non-homogeneous Poisson process with a parametric intensity

$$\mu(t; oldsymbol{
ho}, oldsymbol{ heta}) = \int_{\mathbb{R}} \psi(z; oldsymbol{
ho}) f_W(t, z; oldsymbol{ heta}) \mathsf{d}z$$

• Back-fit the incurred but not reported claims

- Suppose that $Y_t^{(\ell)}$ is a loss amount for a time time period t (e.g., month) and for a LoB ℓ
- Assume that the dependence between lines of business (LoBs) is modeled via a parametric copula (possibly time-varying in order to capture dynamic behavior)
- E.g., $\ell \in \{1,2\}$... two LoBs (material damage and bodily injury)

$$\mathbb{P}\left[Y_t^{(1)} \leq y^{(1)}, Y_t^{(2)} \leq y^{(2)}\right] = \boldsymbol{\mathsf{C}}\left(\mathbb{P}\left[Y_t^{(1)} \leq y^{(1)}\right], \mathbb{P}\left[Y_t^{(2)} \leq y^{(2)}\right]; \boldsymbol{\alpha}(t)\right)$$

- Probabilistic framework for the n.i.n.i.d. observations
- Time-varying models in an unbalanced panel data setup
- Maximum likelihood estimators derived
- Proved consistency and asymptotic normality of the estimators
- Justification for usage of the method

Results

M(t) as NHPP (Material)

Material

Years

Material

Distribution of reserves

Method

M(t) as NHPP (Bodily)

Bodily

Years

Bodily

Distribution of reserves

Method

Total

Distribution of reserves

Predicted Future Reportings

Counts of reporting dates [Material]

Predicted Future Reportings

Counts of reporting dates [Bodily]

Back-fitted Recent Accidents

Back-fitted Recent Accidents

Conclusions

- Focus on three synergic research areas:
- 1. Inventing stochastic methods for loss reserving based on claim-by-claim data
- 2. Using dynamic copulae for modeling dependencies among types of claims
- 3. Deriving appropriate statistical inference for these approaches

Questions?

michal.pesta@mff.cuni.cz

- Antonio, K. and Plat, R. (2014): Micro-level stochastic loss reserving for general insurance, <u>Scand. Actuar. J.</u> 2014(7), 649–669
- Kingman, J.F.C. (1993): <u>Poisson Processes</u>. Oxford University Press, New York, NY
- Maciak, M., Okhrin, O., and Pešta, M. (2018): Micro and Dynamic Claims Reserving Embracing Dependencies, Submitted.
- Norberg, R. (1993): Prediction of outstanding liabilities in non-life insurance, <u>ASTIN Bull.</u> 23(1), 95–115