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Aims



Two Main Goals

e Primary: predict future claim cash flows in non-life insurance and their

uncertainty

e Secondary: back-predict incurred but not reported claims due to truncated

data



Aggregated vs Granular

e Pitfalls of the conventional reserving techniques:
e |oss of information from the policy and the claim’s development due to the
aggregation, cf. Norberg (1993)
e usually small number of observations in the triangle
e only few observations for recent accident years
e sensitivity to the most recent paid claims
e How to possibly overcome the issues:
e individual/claim-by-claim/micro-level /granular data, which do not represent
a mainstream in the reserving field, e.g., Antonio & Plat (2014)



Development of a claim
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Methodology



Reporting Dates

e The time ordered reporting dates {Z;};en are arrival times of
a non-homogeneous Poisson process {M(t)};>o with a parametric intensity
Y(t; p) such that

oo

M(t)=> 1{Z <t}

i=1

e The cumulative intensity V(t; p) fo v; p)dv diverges if t — oo



Reporting Delays

e The reporting delays W;'s are independent random variables
e Sequence {W;}en is stochastically independent of {Z;}ien
e Given Z, = z, W, has a parametric density fyy (-, z; 0)



Payment Dates

e The time ordered payment delays {U;; — Z;, U;» — Z;, ...} of the ith claim
are arrival times of a non-homogeneous Poisson process {N;(t)}:>o

o N;(t)|W;, Z

e Processes {N;(t)}:>0, i = 1,2,... are independent with a parametric

intensity \;(t; v, 3) such that

o0

N,-(t) = Z 1{U,'7k = Z,' < f}

k=1

e The cumulative intensity A;(t; v, 3) := fot Ai(v; v, B)dv converges if t — oo



Payment Amounts

Sets of the payment amounts {Xj;};'s are independent random sequences

Sequence {Xj;}; forms an AR process

Sequence {{Xj};}ien is stochastically independent of {Z;}ien

Given Z, = z, the first payment X,; has a parametric density fx(-, z; ¢)



Accident Dates

Accident dates as displacement of the reporting dates

Reporting dates are fully observed, accident dates are truncated

The displacement theorem (Kingman, 1993) provides that accident dates
T;'s are arrival times of another non-homogeneous Poisson process with
a parametric intensity

u(t; p, 0 /¢zpfw(t20)d

Back-fit the incurred but not reported claims



e Suppose that Yt(g) is a loss amount for a time time period t (e.g., month)
and for a LoB ¢

e Assume that the dependence between lines of business (LoBs) is modeled

via a parametric copula (possibly time-varying in order to capture dynamic
behavior)

e Eg,le{1,2} ... two LoBs (material damage and bodily injury)

PV <y® v <y@] = (P [V <y0] P [v? <@ )
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By-product for Stochastic Theory

Probabilistic framework for the n.i.n.i.d. observations

e [ime-varying models in an unbalanced panel data setup
e Maximum likelihood estimators derived

Proved consistency and asymptotic normality of the estimators

Justification for usage of the method

11



Results
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Predicted Future Reportings

Counts of reporting dates [Material]
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Predicted Future Reportings

Counts of reporting dates [Bodily]
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Back-fitted Recent Accidents

Counts of accident dates [Material]
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Back-fitted Recent Accidents

Counts of accident dates [Bodily]
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Conclusions




e Focus on three synergic research areas:

1. Inventing stochastic methods for loss reserving based on claim-by-claim data
2. Using dynamic copulae for modeling dependencies among types of claims

3. Deriving appropriate statistical inference for these approaches

21
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