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Aims



Two Main Goals

• Primary: predict future claim cash flows in non-life insurance and their

uncertainty

• Secondary: back-predict incurred but not reported claims due to truncated

data
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Aggregated vs Granular

• Pitfalls of the conventional reserving techniques:

• loss of information from the policy and the claim’s development due to the

aggregation, cf. Norberg (1993)

• usually small number of observations in the triangle

• only few observations for recent accident years

• sensitivity to the most recent paid claims

• How to possibly overcome the issues:

• individual/claim-by-claim/micro-level/granular data, which do not represent

a mainstream in the reserving field, e.g., Antonio & Plat (2014)
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Illustration
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Methodology



Reporting Dates

• The time ordered reporting dates {Zi}i∈N are arrival times of

a non-homogeneous Poisson process {M(t)}t≥0 with a parametric intensity

ψ(t;ρ) such that

M(t) =
∞∑
i=1

1{Zi ≤ t}

• The cumulative intensity Ψ(t;ρ) :=
∫ t

0
ψ(v ;ρ)dv diverges if t →∞
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Reporting Delays

• The reporting delays Wi ’s are independent random variables

• Sequence {Wi}i∈N is stochastically independent of {Zi}i∈N
• Given Zn = z , Wn has a parametric density fW (·, z ;θ)
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Payment Dates

• The time ordered payment delays {Ui ,1 − Zi ,Ui ,2 − Zi , . . .} of the ith claim

are arrival times of a non-homogeneous Poisson process {Ni(t)}t≥0
• Ni(t)|Wi ,Zi

• Processes {Ni(t)}t≥0, i = 1, 2, . . . are independent with a parametric

intensity λi(t;ν,β) such that

Ni(t) =
∞∑
k=1

1{Ui ,k − Zi ≤ t}

• The cumulative intensity Λi(t;ν,β) :=
∫ t

0
λi(v ;ν,β)dv converges if t →∞
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Payment Amounts

• Sets of the payment amounts {Xij}j ’s are independent random sequences

• Sequence {Xij}j forms an AR process

• Sequence {{Xij}j}i∈N is stochastically independent of {Zi}i∈N
• Given Zn = z , the first payment Xn1 has a parametric density fX (·, z ; ζ)
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Accident Dates

• Accident dates as displacement of the reporting dates

• Reporting dates are fully observed, accident dates are truncated

• The displacement theorem (Kingman, 1993) provides that accident dates

Ti ’s are arrival times of another non-homogeneous Poisson process with

a parametric intensity

µ(t;ρ,θ) =

∫
R

ψ(z ;ρ)fW (t, z ;θ)dz

• Back-fit the incurred but not reported claims
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Copula

• Suppose that Y
(`)
t is a loss amount for a time time period t (e.g., month)

and for a LoB `

• Assume that the dependence between lines of business (LoBs) is modeled

via a parametric copula (possibly time-varying in order to capture dynamic

behavior)

• E.g., ` ∈ {1, 2} . . . two LoBs (material damage and bodily injury)

P

[
Y

(1)
t ≤ y (1),Y

(2)
t ≤ y (2)

]
= C

(
P

[
Y

(1)
t ≤ y (1)

]
,P
[
Y

(2)
t ≤ y (2)

]
;α(t)

)
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By-product for Stochastic Theory

• Probabilistic framework for the n.i.n.i.d. observations

• Time-varying models in an unbalanced panel data setup

• Maximum likelihood estimators derived

• Proved consistency and asymptotic normality of the estimators

• Justification for usage of the method
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Results



M(t) as NHPP (Material)
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Material

Distribution of reserves

Method

R
es

er
ve

 [M
ill

io
ns

]

45

50

55

60

65

70

75

80

85

90

95

100

Aggregated Granular

13



M(t) as NHPP (Bodily)
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Bodily

Distribution of reserves
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Total
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Predicted Future Reportings
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Predicted Future Reportings
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Back-fitted Recent Accidents
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Back-fitted Recent Accidents
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Conclusions



Summary

• Focus on three synergic research areas:

1. Inventing stochastic methods for loss reserving based on claim-by-claim data

2. Using dynamic copulae for modeling dependencies among types of claims

3. Deriving appropriate statistical inference for these approaches
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Questions?

michal.pesta@mff.cuni.cz
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