

Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví

Pavel Kříž

Seminář z aktuárských věd MFF 4. dubna 2014

Summary

- 1. Application areas of Insurance Analytics
- 2. Insurance Analytics process
- 3. Modelling techniques (CRT in more detail)

- 4. Case study Identification of customers for X-selling campaign
 - Business and data understanding
 - Predictive modelling
 - Cost-benefit analysis

Areas of application in insurance

Main application areas of Insurance Analytics

Main application areas of Insurance Analytics

Insurance Analytics

process

Insurance Analytics project

- Phases of the CRISP-DM reference model
- The process is not straightforward

Phases overview

Components of phases of the CRISP-DM reference model

Business Understanding	Data Understanding	Data Preparation	Modelling	Evaluation	Deployment
 Business Objectives Assess Situation 	 Collect Initial Data Describe Data Explore Data Verify Data Quality Verify Data Quality 1-way ANOVA scatter plots, box plots 	 Clean Data Select Relevant Variables Construct New Variables Cluster analysis Identification of outliers Dimension reduction techniques 	 Select Modelling Techniques Build Model GLM (logistic regression,) CRT Naïve Bayesian Networks Neural networks 	 Evaluate Results Asses models Cross- validation Cumulative gains, Lift 	 Application of Results Next steps Cost-benefit analysis Optimization

Modelling techniques

GLM - overview

• Based on parametrized statistical model with explicit assumptions

• Parameters estimated using statistical techniques – e.g. maximum likelihood

=> (asymptotic) properties known from general theory

 Includes logistic regression (binary response variable) – useful for classification

Classification and regression trees (CRT)

• Tree: $(X_1, X_2, \dots X_n) \longrightarrow Y$

- Piece-wise constant function on segments of factor-space
- Classification trees: Y = 0 or Y = 1
 - Predictions in terms of distributions: y = P(Y = 1)

Regression tree for house prices in California

Source: http://www.stat.cmu.edu/~cshalizi/350/lectures/22/lecture-22.pdf

Growing (learning) CRT

Performed on training data

1. Find good partitioning

- 2. Fit local models for leaves: constant function
 - Average over observations in the leave

Growing CRT

Stopping criterion

- Number of observations within each child
- Threshold for decrease in heterogeneity

Measuring heterogeneity

- Various measures => various algorithms
- 1. <u>Regression trees</u>: Sum of squared errors

$$S = \sum_{c \in leaves(T)} \sum_{i \in c} (y_i - m_c)^2, \text{ where } m_c = \frac{1}{|c|} \sum_{i \in c} y_i$$

2. <u>Classification trees</u>: **Gini impurity** (\Leftrightarrow sum of squared errors), $I_G = avg_{c \in leaves(T)}\{p_c(1-p_c)\}, \text{ where } p_c = \frac{1}{|c|}\sum_{i \in c} y_i$

Entropy

 $I_E = avg_{c \in leaves(T)} \{ -p_c log_2(p_c) - (1 - p_c) log_2(1 - p_c) \},\$

Pruning CRT

Problem: How to set stopping criterion

- Too strict => CRT cannot capture local dependencies
- **Too mild** => over-fitting

Way out: Pruning

- 1. Grow large tree: with mild stopping criterion
- 2. Prune the tree: re-join leaves, which do not decrease heterogeneity

Combine with cross-validation:

- 2 sets of records: training and testing
- Use training data to grow the tree
- Use testing data to prune the tree

© 2014 Deloitte Česká republika

Uncertainty in CRT

How precise/reliable is prediction from CRT?

- 1. Error in conditional mean estimate
 - Prediction error assuming the tree is correct
 - Estimate of standard error of mean (under i.i.d. errors)

$$SE_{c} = \frac{s_{c}}{\sqrt{|c|}} \qquad \qquad \widehat{SE}_{c} = \frac{\hat{s}_{c}}{\sqrt{|c|}} = \frac{1}{\sqrt{|c|}} \sqrt{\frac{1}{(|c|-1)} \sum_{i \in c} (y_{i} - m_{c})^{2}}$$

- 2. Error in tree fitting
 - How different would the tree be had we drawn different sample
 - Non-parametric bootstrapping
 - Draw samples from data with replacement
 - Grow trees on samples => empirical distribution

Why to use CRT?

Pros	Cons
Captures local dependencies and interactions	Not smooth = No sensitivities
Making predictions is fast	Does not distinguish points
Identifies variables important for predictions => dimension reduction	Difficulties with global patterns
Easy to understand and interpret (white box)	Learning NP-complete =>
Able to handle numerical and categorical data	locally optimal trees
Robust (not sensitive to assumptions)	
Performs well with large datasets]
Predictions if some variables are missing	
Enables distributional predictions	

Naive Bayes Classifiers

Based on:

- Bayes' theorem
- Conditional independence of factors (given the class variable)
 - it is too strong and naive assumption

Probabilistic model

$$P(Y = c | X_1 = x_1, ..., X_n = x_n)$$

=
$$\frac{P(Y = c) P(X_1 = x_1, ..., X_n = x_n | Y = c)}{P(X_1 = x_1, ..., X_n = x_n)}$$

=
$$\frac{1}{Z} P(Y = c) P(X_1 = x_1 | Y = c) ... P(X_n = x_n | Y = c)$$

Parameter estimation

maximum likelihood = relative frequencies

Case study: Cross-selling of Caravan insurance Business and data understanding

Determination of target customers of X-selling campaign for Caravan insurance

Data Understanding

- Public dataset from the Coil 2000 data mining competition
- Downloaded from
 <u>http://www.inf.ed.ac.uk/teaching/courses/dme/html/datasets0405.html</u>

Characteristics

- A table with customer data of an insurance company
- 9822 records
- Target variable: Caravan Insurance holder (binary)
- 86 attributes:
 - 43 socio-demographic variables derived from ZIP code
 - 43 variables about premium paid and number of insurance policies
- Only 5% of customers have Caravan Insurance

- Single factor analysis, prediction power w.r.t. dependent variable
- Variables categorized => prediction power tested by <u>1-way ANOVA</u>:

Summary of 1-way ANOVA results – selected variables with highest F-statistic				
Variable	Description	F	Sig. (p-value)	
PPERSAUT	Contribution car policies	145.393	4.36E-33	
APERSAUT	Number of car policies	123.607	1.98E-28	
ATOTAL	Total number of insurance ADJ	104.262	2.84E-24	
PTOTAL	Total insurance contribution ADJ	78.093	1.28E-18	
APLEZIER	Number of boat policies	65.758	6.16E-16	
PWAPART	Contribution private third party insurance	56.454	6.62E-14	
MKOOPKLA	Purchasing power class	54.066	2.21E-13	
MINKGEM	Average income	47.725	5.43E-12	
MOPLEDUC	Education level ADJ	46.977	7.92E-12	
AWAPART	Number of private third party insurance	46.877	8.34E-12	
MSKSOCIAL	Social class ADJ	37.892	7.98E-10	
MINCOME	Average income ADJ	31.339	2.27E-08	
MRELGE	Married	29.271	6.54E-08	
PPLEZIER	Contribution boat policies	28.946	7.73E-08	

- Factors ordered by F-statistic: the higher the F-statistic, the better prediction potential of the factor
- No information about the "sign" of the dependency, the dependency need not be monotonous
- Does not capture correlations

- More detailed analysis of selected individual factors
 - Selected based on business feeling and 1-way ANOVA
 - Main expected factors to determine propensity to buy Caravan insurance are:
 - Ownership of car(s), wealth (purchasing power), risk aversion (propensity to buy insurance)

Example of single factor analysis:

- Car insurance policies:
 - More policies => higher propensity to buy Caravan insurance
 - Classes with low number of customers irrelevant

- Boat insurance
 - Having a boat insurance significantly increases propensity to have Caravan insurance
 - Only few customers have boat insurance

Number of boat policies

- Purchasing power class
 - Prediction power of factor "purchasing power class" appears rather limited (except for class 7)

Purchasing power class

- Family status:
 - Higher chance of being married (derived from ZIP code) increases chance to buy caravan insurance
 - Current marital status (not available in current data) might be useful factor

Data Preparation

- Can by very time-demanding
- Important for successful modelling
- Includes:
 - Data cleansing;
 - Derivation of new factors
 - Use of external sources
 - etc.

Modelling

Cross-validation

Records divided into 2 subset:

Training data: used to estimate parameters

Testing data: used to verify model prediction power

Logistic regression

- Special type of GLM
 - Bernoulli 0-1 valued response variable: P(Y=1) = p, P(Y=0) =1-p
- Regression equation:

 $log \frac{p}{1-p} = \sum_{i=1}^{K} B_i \times x_i$ where B_i = parameter; x_i = variable

• Based on forward stepwise selection and single factor analysis, we selected following variables for the model

Variable	Description
PPERSAUT	Contribution car policies
MKOOPKLA	Purchasing power class
MRELGE	Married
MOPLEDUC	Education level ADJ
PTOTAL	Total insurance contribution ADJ
APLEZIER	Number of boat policies

Logistic regression – dummy variables

- Recoding of categorical variable KOOPKLA (purchasing power class) into several dummy (0-1) variables
 - Enables use of nominal/categorical variables
 - Enables modelling non-monotonous dependencies

Categorical Variables Coding								
Factor	Dummy variable							
value	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
1	1	0	0	0	0	0	0	
2	0	1	0	0	0	0	0	
3	0	0	1	0	0	0	0	
4	0	0	0	1	0	0	0	
5	0	0	0	0	1	0	0	
6	0	0	0	0	0	1	0	
7	0	0	0	0	0	0	1	
8	0	0	0	0	0	0	0	

Logistic regression

• Regression equation:

 $log \frac{p}{1-p} = \sum_{i=1}^{K} B_i \times x_i$ where B_i = parameter; x_i = variable

- Parameter interpretation:
 - B ... estimated parameter value
 - Sig...significance level (p-value) of the hypothesis "parameter = 0". Low values indicate significant variables (i.e. sig = probability that real parameter is zero)
 - Exp(B)...percentage change of odds (p/1-p) by changing the corresponding variable by 1 unit
 - <u>Example (see below)</u>: Increase in number of boat policies by 1 increases odds (ratio of those with caravan insurance to those without caravan insurance) 7.3 times compare to single factor analysis.

Parameter estimates				
Variable	Description	В	Sig.	Exp(B)
APLEZIER	Number of boat policies	1.99262	0.00000	7.33469

Logistic regression – parameter estimates

MLE Parameter estimates					
Variable	Description	В	Sig.	Exp(B)	
MKOOPKLA	Purchasing power class		0.00106		
MKOOPKLA(1)		-0.44840	0.16598	0.63865	
MKOOPKLA(2)		-0.30545	0.38822	0.73679	
MKOOPKLA(3)		-0.24723	0.29789	0.78096	
MKOOPKLA(4)		-0.13853	0.58047	0.87064	
MKOOPKLA(5)		-0.09847	0.72481	0.90622	
MKOOPKLA(6)		0.06729	0.76930	1.06961	
MKOOPKLA(7)		0.60826	0.00710	1.83723	
PPERSAUT	Contribution car policies	0.00046	0.00000	1.00046	
MRELGE	Married	0.01052	0.00054	1.01057	
MOPLEDUC	Education level ADJ	0.36838	0.00036	1.44539	
PTOTAL	Total insurance contribution ADJ	-0.00008	0.06396	0.99992	
APLEZIER	Number of boat policies	1.99262	0.00000	7.33469	
Constant		-4.72476	0.00000	0.00887	

• Being in purchasing power class 7 significantly increases probability of caravan ins. compared to base class 8, other classes rather decrease the probability, but the estimates are not significant (compare to single factor analysis)

- Increase in contributions to car insurance increases probability of caravan ins. The sensitivity to change in contributions by 1 monetary unit is not high. However, the parameter is significant and should stay in the model.
- Higher probability of being married increases probability of caravan insurance.
- Higher education level increases probability of caravan insurance.
- Higher insurance contributions slightly decrease probability of caravan ins, which is contraintuitive (compare to single factor analysis. However, the parameter is insignificant. => Should be excluded from the model?
- Having boat policy => high probability of having caravan insurance.

Logistic regression – diagnostics of classification

- Predictions on testing set
- Correct predictions = 3629 + 26 = 3655
 - If we predicted 0 => 3762 correct predictions (but useless)
- Prediction = 1 => 26 correct, 133 misclassified
- Seemingly poor classifier due to unbalanced data (only 6% caravan ins. holders)

Logistic regression – diagnostics of probabilities

Cumulative Gains Lift 4.5 1 Increment of chance of caravan insurance holder Percentage of caravan insurance holders in the 0.9 4 0.8 3.5 0.7 3 to be in the sample 0.6 2.5 sample 0.5 2 0.4 1.5 0.3 1 0.2 0.5 0.1 0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Percentage of observations with the highest Percentage of observations with the highest probability provided by the model probability provided by the model

- Cumulative Gains: In 20% of all observation (with the highest probability), there are 45% of all caravan insurance holders.
- Corresponding Lift: for best 20% of observation the method is 2.5x better then random selection

35

Logistic regression – diagnostics of probabilities 2

Lift **Cumulative Gains** 4.5 1 Percentage of caravan insurance holders in the Increment of chance of caravan insurance holder 0.9 4 0.8 3.5 train set 0.7 3 to be in the sample -test set 0.6 2.5 sample 0.5 2 0.4 1.5 0.3 train set 1 0.2 test set 0.5 0.1 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 Percentage of observations with the highest Percentage of observations with the highest probability provided by the model probability provided by the model

Cumulative Gain/Lift slightly better for training set => slight over-fitting

Classification tree – growing

- Pre-selection of variables not needed
- Graph of the decrease in deviance (Gini impurity) by adding nodes

Classification tree - pruned

- Based on graph, originally selected 20 nodes => over-fitting
- Nr. of nodes reduced to 6 => worse Lift for training set, but better Lift for testing set

Classification tree – selected factors

Variable	Description
PTOTAL	Total insurance contribution ADJ
MOSHOOFD	Customer main type (L2)
PPLEZIER	Contribution boat policies
MBERARBO	Unskilled labourers

Customer main type				
L2	Label			
а	Successful hedonists			
b	Driven Growers			
С	Average Family			
d	Career Loners			
е	Living well			
f	Cruising Seniors			
g	Retired and Religeous			
h	Family with grown ups			
i	Conservative families			
j	Farmers			

- Selected variables to a certain extend correspond to single factor analysis.
- Number of observations in terminal nodes seem to be unbalanced

Classification tree - diagnostics

Cumulative Gains

- The tree usable for up to 30% of the observations
- The identification of remaining caravans seems comparable to random selection (due to ٠ unbalanced leaves)

Naive Bayes Classifier

• Selected same factors as in logistic regression

Cumulative Gains

Lift

Comparison of the methods on testing set

Cumulative Gains Lift 4.5 1 in the Increment of chance of caravan insurance holder to 0.9 4 Logistic regression Percentage of caravan insurance holders 0.8 3.5 Classification tree 0.7 Naïve Bayes 3 0.6 be in the sample 2.5 sample 0.5 2 0.4 Logistic regression 1.5 0.3 Classification tree 1 0.2 Naïve Bayes 0.1 0.5 0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 1 Percentage of observations with the highest probability Percentage of observations with the highest provided by the model probability provided by the model

- Up to 30% 40% of observations all the methods give similar results
- For the remaining part logistic regressions and naïve Bayes are better than classification tree

Cost-benefit analysis

"Ex-post" cost analysis

What are the costs to win the desired number of caravan insurance?

- Based on logistic regression
- Dependency of costs on the number of caravan insurance buyers within testing set
- Comparison of costs without analysis (blue line) and with analysis (green line)
- Assumptions
 - Initial costs to start the campaign = 5 000 €
 - Costs per customer = 4 €
 - Success rate in the population = 6% (computed from the testing data set)

Profit analysis

What is the profit when addressing desired number of customers based on the analysis?

- Dependency of profit on the number of addressed customers within testing set
- Assumptions
 - Initial costs to start the campaign = 5 000 €
 - Costs per customer = 4 €
 - Profit from 1 customer = 100 €

- Maximum profit is 5 460 €
- The maximum profit is reached at 2085 addressed customers

Thank you for your attention.

Questions?

