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Introduction

Best estimate claim provisions

Basic reserving task – calculation of claim provisions

 Claim provisions (IBNR + RBNS) should cover insured claims incurred in the past and settled in the 

future and related expenses

 The value of the claim provisions is a random variable

 Concept of the best estimate of claim provisions

 Chain ladder (or in general development factor method - DFM), Bornhuetter Ferguson, ultimate claim 

ratio method, etc.

 Parametrization of method based on expert judgment, supported by qualitative information about 

portfolio development

 Uncertainty connected to the calculated claim provisions may pose considerable risk
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Introduction

Ultimate vs one year view

Ultimate view

 Uncertainty related to claim provisions until run off of the claim provisions (all claims settled)

One year view

 Uncertinty related to claim provisions from the one year view

 One year view is identical to standard one year run off of claim provisions

 The sources of one year uncertainty are

 Actual vs expected claim payments during next year

 Recalculation of claim provisions after one year

R0 = R1’ + C1’

Run off result = R0 - R1 - C1 = (R1’ + C1’) - R1 - C1= (R1’ - R1) + (C1’ - C1)

Where

 Ri is claim provision at time i, i=0,1

 R1’ is claim provision at time i according to expectation at time 0

 C1 are actual claim payments between time 0 and time 1

 C1’ are actual claim payments between time 0 and time 1 according to expectation at time 0
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Introduction

Distribution of claim provisions

Understanding and quantification reserve uncertainty

Estimate of single additional characteristics

 Mack formula – estimate of standard deviation for ultimate view

 Merz Wüthrich formula – estimate of standard deviation for one year view

 Mack and Merz Wüthrich formula are distribution free, estimates of percentiles require additional 
distribution assumptions

Estimate of full distribution function of claim provisions

 Stochastic methods

 Mack method, ODP method, etc. for ultimate view

 Parametrization of methods based on expert judgment, supported by qualitative information about 

portfolio development

 The knowledge of the full distribution function allows quantification of uncertainty via different 

measures, for example

 VaR (percentile)

 TVaR

 Standard deviation
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Introduction

Application of risk quantification

Examples of application of risk quantification

 Solvency II internal model

 Validation of technical provisions

 Appropriateness of standard formula

 IFRS 17 risk margin and disclosure

 Reinsurance strategy

 Asset liability matching

 Own risk management and understanding of the risk and portfolio
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Bootstrap approach

Pseudo data

Creation of “more histories” of the random variable

 Creation of pseudo data

 The set of pseudo data should have similar characteristics as the original data

 The pseudo data is created through random permutation with repeating

 The core data should be comparable, i.e. come from the same probabilityy distribution, therefore 

preliminary adjustments are sometimes necessary (for example standardization)
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Bootstrap approach

Pseudodata in development triangle

Pseudodata = alternative development triangles

 ODP model

 The best estimate chain ladder development factors can be used to produce development triangle 

with “best estimate history” – the factors are applied to the diagonal in reverse order

 The difference between the actual triangle and triangle with “best estimate history” provides 

residuals to be used for bootstrapping (permuted standardized residuals create pseudo triangles)

 ODP model uses residuals coming from the difference of actual and “best estimate history”

incremental cumulative payments in particular cells

 Mack model

 Mack model uses residuals coming from the difference of actual and best estimate development 

factors for particular accident and development periods

 Permuted standardized residuals are applied on the last diagonal to create pseudo triangle

 The residuals need to be standardized as their characteristics are different for particular triangle cells
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1 2 3 4 5 6 7 8 9 10

1 208,0 0,0 -139,1 -386,0 209,6 643,2 -291,9 -122,7 0,0 0,0

2 -49,2 -68,1 -59,8 160,9 -220,5 -168,2 310,7 30,3 90,3

3 -166,5 94,8 -57,3 -27,6 285,1 -499,8 255,3 71,9

4 -115,3 251,3 -228,8 658,2 -483,9 -89,5 -324,5

5 227,0 -195,8 150,6 -216,1 -26,2 217,0

6 87,2 72,9 -97,8 -227,2 265,4

7 96,0 -161,3 132,8 -36,1

8 -199,5 -124,3 242,9

9 -28,2 16,6

10 0,0
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Bootstrap approach

Process error

 Pseudo data is a limited set and can produce only a limited set of results with in advance limited 

cardinality

 The prediction variance can be expressed as:

prediction variance = estimation variance + process variance

 To capture also the process error, the bootstrapping can be enriched through “randomization”–

replacing values in an appropriate calculation step by a generated random value, this incorporates 

also process error
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 This requires additional assumption 

regarding the distribution function of 

data

 Correctness of assumptions, especially 

correctness of assumed model need to 

be tested to minimize the model risk
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Bootstrap approach

Outline of algorithm

Projection, 
“randomization” = 
replacing pseudo 
values by random 
values, process 

error

Recording results, 
restarting process

Random 
permutation of 

standardized data, 
estimation error
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ODP model

Assumptions

Assumptions of ODP model

 Over dispersed Poisson distribution of incremental values

 We assume that each incremental value Ii, j in origin period i and development period j consists of a 

systemic and random component and

𝐸 𝐼𝑖,𝑗 = 𝑚𝑖,𝑗 𝑉𝑎𝑟 𝐼𝑖,𝑗 = 𝜙𝑚𝑖,𝑗

𝑙𝑜𝑔 𝑚𝑖,𝑗 = 𝜂𝑖,𝑗 𝜂𝑖,𝑗 = 𝑐 + 𝛼𝑖 + 𝛽𝑗 𝛼1 = 𝛽1 = 0

Where

 Parameter 𝜙 is called scale parameter. It can be either constant for whole triangle or different for 

particular development periods

 Coefficients αi, βi can be found through the method of maximum likelihood. This can be short 

calculated by chain ladder method.
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ODP model

Algorithm

1 Initial model fit

 The starting point is fitting chain ladder method.

 The chain  ladder model is used to derive incremental fitted values mi,j based on the observed 

cumulative latest diagonal.

2 Calculation of residuals

 Calculate unscaled Poisson residuals

 Calculate scale parameter

Where

 n is number of fitted values (cells of underlying development triangle)

 p is number of parameters in chain ladder model
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𝑢𝑖,𝑗 =
𝐼𝑖,𝑗 − 𝑚𝑖,𝑗
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ODP model

Algorithm

 Calculate standardized residuals and apply bias adjustment

3 For each simulation 

 Create triangle of pseudo data – based on random permutation with repeating of residuals ri,j from 

those derived at step 2 above to calculate a pseudo triangle data value

 Re-apply chain ladder method based on the pseudo data to generate new projections and reserves

 Add process variance to projected future development – replace projected values by random values

from selected distribution

4 Calculate selected measure 

distributions, percentiles, means and standard deviations for reserves and other items of interest
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Mack model

Assumptions

Statistical model underlying chain ladder, assumptions of Mack model same as chain ladder
 Expected value of cumulative value of claims

𝐸 𝐶𝑖,𝑗+1 𝐶𝑖,1, … , 𝐶𝑖,𝑗 = 𝑓𝑗𝐶𝑖,𝑗

 Variance of cumulative value of claims

𝑉𝑎𝑟 𝐶𝑖,𝑗+1 𝐶𝑖,1, … , 𝐶𝑖,𝑗 = 𝜎𝑗
2𝐶𝑖,𝑗

 Origin periods [Ci,1,…,Ci,j] are independent

Where 
 Cij is cumulative value of claims in the origin period i and development period j
 fj is the development factor for the development period j
 σj is the squared sigma for the development period j

Properties
 Pseudo data originate in values of development factors fi,j
 The method is robust against negative incremental values (more suitable for incurred development 

triangles than ODP)
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Mack model

Algorithm

1 Initial model fit

 The starting point is fitting chain ladder method.

 Subsequently Mack’s alpha squared is calculated as follows:

𝛼𝑗
2 =

1

𝑛𝑗
 

𝑖

[𝐶𝑖,𝑗(𝑓𝑖,𝑗 − 𝑓𝑗 )2]
𝑛

𝑛 − 𝑝

Where

 nj is the number of included development factors at development j

 n is the sum of the nj

 p is the number of parameters in the chain ladder model

 fi,j are the observed ratios of Ci,j+1/Ci,j
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Mack model

Algorithm

2 Calculation residuals

 Calculate residuals and apply bias adjustment

𝑟𝑖,𝑗 =
𝐶𝑖,𝑗(𝑓𝑖,𝑗 − 𝑓𝑗)

𝛼𝑗

𝑛

𝑛 − 𝑝

3 For each simulation 

 Create triangle of pseudo data – based on random permutation with repeating of residuals ri,j from 

those derived at step 2 above to calculate a pseudo triangle data value

 Re-apply chain ladder method based on the pseudo data to generate new projections and reserves

 Add process variance to projected future development – replace projected value by random value 

from selected distribution

4 Calculate selected measure 

distributions, percentiles, means and standard deviations for reserves and other items of interest
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Practical stochastic

 The Practical stochastic method provides an alternative to the Bootstrap method for use in segments 

where it is not possible to produce a sensible bootstrap method result, typically because of poor or 

erratic data.

 It requires the following inputs

 A vector of ultimate claims and a triangle basis to enable the expected reserves to be calculated

 A payment pattern vector to enable cash flows to be generated (if required)

 Coefficients of variation for each origin period

 Assumptions regarding the correlation between reserves by origin period

 In each simulation 

 The ultimate claims are simulated for each origin period. Typically lognormal, normal or gamma 

distributions are chosen

 The claim provisions are calculated as the difference of simulated ultimate and the last diagonal of 

underlying cummulative development triangle

 The results per origin period are aggregated to total based on correlation matrix

 This method provides simulation results of claim provisions, but not stochastic cash flows for each 

simulation (only constant distribution of unpaid claims based on input pattern vector)
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Stochastic run off

Re-reserving approach

1 Projection of next calendar period(s)

 The projection of next calendar period(s) is created for example by bootstrapping method. The 

projections of the bootstrapping methods are a suitable input for the stochastic run off

2 Re-reserving based on triangle enhanced by next development period(s)

 “Actuary in a box” approach to re-reserving

 The re-reserving can be done based on several reserving methods, most frequently chain ladder or 

Bornhuettter Ferguson and different parametrization of these methods

 A realistic approach to re-reserving must be chosen
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Stochastic run off

Emergence pattern approach

Emergence pattern approach

 Alternative to re-reserving, suitable especially if stochastic cash flows are not available, for example in 

the case of Practical stochastic method (re-reserving cannot be used)

 The emergence pattern defines how the reserve uncertainty decreases over time. There are various 

methods for calculation of the pattern

Where

 SimulatedReservei,s is the simulated reserve for origin period i and simulation s in the input method

 SimulatedCashFlowi,s is the simulated cash flow for origin period i and simulation s in the input 

method (based on average pattern)

 SelectedPatterni is item of the selected emergence pattern for origin period i

21
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Practical example

Task definition

Task: Calculation of reserve risk SCR for segment based on the following development triangle of 

claims paid
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Practical example

Input data
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• Approach to large claims

• Interpretation of differences between accident periods

• Choice of data type and analysis of input data

Input data (segment, data type)

Bootstrap model, ultimate view

DFM models review

Run off model, 1 year view

Testing

Results consolidation
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Practical example

DFM models review, analysis of residuals
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• Parametrization of DFM method to be used by the bootstrap model.

• Expert judgments (exclusion of development factors, curve fitting for 

the development factors, choice of final DFM method, tail factors)

• Assumption checks of underlying DFM method

• The result of DFM must be reasonably close to the BE CP

Input data (segment, data type)

Bootstrap model, ultimate view

DFM models review

Run off model, 1 year view

Testing

Results consolidation
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Practical example

DFM models review, analysis of residuals
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Input data (segment, data type)

Bootstrap model, ultimate view

DFM models review

Run off model, 1 year view

Testing

Results consolidation
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Practical example

DFM models review, analysis of residuals
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Input data (segment, data type)

Bootstrap model, ultimate view

DFM models review

Run off model, 1 year view

Testing

Results consolidation
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Practical example

Bootstrap model, ultimate view 
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• The Bootstrap method is used to produce the scenarios of 

development of the ultimate claims

• The following choices must be made

• Choice of model (Mack, ODP)

• Adjustments to residuals and scale parameter (smoothing, zero 

average residuals, etc)

• Scaling of the result (multiplicative, additive, user defined)

Input data (segment, data type)

Bootstrap model, ultimate view

DFM models review

Run off model, 1 year view

Testing

Results consolidation
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Practical example

Bootstrap model, ultimate view 
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Input data (segment, data type)

Bootstrap model, ultimate view

DFM models review

Run off model, 1 year view

Testing

Results consolidation
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Practical example

Run off model, 1 year view 
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• Choice of approach 

• Re-reserving approach

• Chain ladder

• Bornhuetter Ferguson with adjusted a priori ultimate claims and 

pay out pattern

• Bornhuetter Ferguson with adjusted pay out pattern

• Bornhuetter Ferguson with no adjustments

• No re-reserving

• Emergence pattern approach

• Potential scaling of result, but average run off result should be close 

to zero in principle

Input data (segment, data type)

Bootstrap model, ultimate view

DFM models review

Run off model, 1 year view

Testing

Results consolidation
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Practical example

Testing 
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• The stability can be tested with respect to all inputs and choices made:

• Input data type

• Number of diagonals

• Parametrization of DFM method

• Random seed

• Number of simulations

• Bootstrap model used

• Choice of forecast distributions for process error

• Scaling approach

• The re-reserving method used

• Comparison with benchmarks

• Strategy and automation of testing convenient due to large amount of 

possible tests

Input data (segment, data type)

Bootstrap model, ultimate view

DFM models review

Run off model, 1 year view

Testing

Results consolidation
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Practical example

Comparison of results – ultimate view
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Model Parametrization Prediction 

error %

99.5% VaR

%

Mack formula* 17.1% 51.3%

Mack Resampled f.d. 17.4% 48.5%

Mack Normal f.d. 17.6% 48.4%

Mack Gamma f.d. 17.5% 49.4%

ODP Resampled f.d. 14.5% 40.7%

ODP Normal f.d. 14.4% 39.8%

ODP Gamma f.d. 14.4% 41.4%

Practical 

stochastic

Lognormal distribution, 0% correlation between origin periods, 

CoV suggested by Mack formula

14.5% 45.7%

Practical 

stochastic

Normal distribution, 0% correlation between origin periods, CoV

suggested by Mack formula

14.5% 37.3%

Mack formula* Highest residual excluded 13.0% 39.0%

Mack Resampled, highest residual excluded 13.2% 35.1%

ODP Resampled f.d., highest residual excluded 12.3% 33.3%

Practical 

stochastic

Lognormal distribution, 0% correlation between origin periods, 

CoV suggested by Mack formula with highest residual excluded

10.6% 31.6%

*99.5% VaR selected as 3 times prediction error (in line with standard formula)
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Practical example

Comparison of results – one year view

33
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*99.5% VaR selected as 3 times prediction error (in line with standard formula)

CHL – chain ladder

BF1 – Bornhuetter Ferguson with unchanged both pay out pattern and a priori ultimate claims

BF2 – Bornhuetter Ferguson with recalculation of pay out pattern and unchanged a priori ultimate claims

BF3 – Bornhuetter Ferguson with recalculation of both pay out pattern and a priori ultimate claims

Model Parametrization Prediction 

error %

99.5% VaR

%

Merz Wuthrich formula* 12.1% 36.4%

Stochastic run off, CHL re-reserving Mack model, resampled f.d. 12.5% 29.5%

Stochastic run off, BF1 re-reserving Mack model, resampled f.d. 5.3% 12.5%

Stochastic run off, BF2 re-reserving Mack model, resampled f.d. 6.7% 16.6%

Stochastic run off, BF3 re-reserving Mack model, resampled f.d. 8.6% 20.7%

Stochastic run off, CHL re-reserving ODP model, resampled f.d. 12.0% 27.9%

Stochastic run off, CHL re-reserving Practical stochastic, lognormal d. 10.8% 22.5%

Merz Wuthrich formula* Highest residual excluded 9.2% 27.5%

Stochastic run off, CHL re-reserving Mack model, resampled f.d., 

highest residual excluded

9.6% 23.4%

Stochastic run off, CHL re-reserving ODP model, resampled f.d., 

highest residual excluded

9.7% 22.9%

Stochastic run off, CHL re-reserving Practical stochastic, lognormal d., 
highest residual excluded

8.1% 17.9%
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Practical example

Claim payments development

Development of total claim 

payments – ultimate view 

simulation

Development of total claim 

payments – one year view 

simulation
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GLM

Model definition

 We assume that each incremental value Ii, j in origin period i and development period j consists of a 

systemic and random component and

𝐸 𝐼𝑖,𝑗 = 𝑚𝑖,𝑗 𝑉𝑎𝑟 𝐼𝑖,𝑗 = 𝜙𝑉(𝑚𝑖,𝑗)

𝑚𝑖,𝑗 = 𝑔−1(𝜂𝑖,𝑗) 𝜂𝑖,𝑗 = 𝑐 +  𝑟=2
𝑖 𝛼𝑟+ 𝑠=2

𝑖 𝛽𝑠+ 𝑡=2
𝑖+𝑗−1

𝛾𝑡

Where

 Parameter 𝜙 is called scale parameter. It can be either constant for whole triangle or different for 

particular development periods

 Coefficients αr βs,γt can be found through the method of maximum likelihood. These are origin, 

development and calendar year parameters.

 V is variance function

 1 for Normal random component

 𝑚𝑖,𝑗 for Poisson random component

 𝑚𝑖,𝑗
2 for Gamma random component

 G is link function (identity or log link is often used in reserving)

 This model is overparametrized, all parameters cannot be independent

 Further, exposures can be assigned to each triangle cells

 The linear predictor is piecewise linear function

36
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GLM

Selection of parameters

Example of approach to parameters

 A parameter at a given period can be set to be independent, then its value needs to be estimated. 

There will be a change of slope in the linear predictor (i.e. a new straight line segment). 

 A parameter at a given period can be set to be the same as previous. The linear predictor continues 

with the same slope as the previous period (for as many periods as parameter is unchanged). 

 A parameter at a given period can be set to 0. In this case the linear predictor is flat. 

The main task is to select the approach described above for each parameter

 This can be done through automated optimization, which includes parameters that are statistically 

significant and exclude parameters that are not. 

 There is no guarantee that a model that is a good fit to the observed data will be useful for forecasting 

into the future, so care should be taken.

Choice and analysis of residuals (residuals also used for estimation of scale parameter)

 Pearson residuals

 Deviance residuals
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GLM

Prediction error error

The prediction error is the square root of the mean squared error of prediction (MSEP) where

𝑀𝑆𝐸𝑃 = 𝐸[(𝐼 −  𝐼)2] = 𝑉𝑎𝑟 𝐼 + 𝑉𝑎𝑟(  𝐼)

For a single cell, the MSEP is given by

𝑀𝑆𝐸𝑃𝑖,𝑗 = 𝑉𝑎𝑟 𝐼𝑖,𝑗 + 𝑉𝑎𝑟(  𝑚𝑖,𝑗)

and for an origin period reserve or total reserve, the MSEP is given by:

𝑀𝑆𝐸𝑃 = 𝑉𝑎𝑟  𝐼𝑖,𝑗 + 𝑉𝑎𝑟(  𝑚𝑖,𝑗)
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Special cases of GLM model

The general definition of model covers several model types, for example:

 ODP chain ladder – origin and development parameters independent, calendar parameters zero, log 

link function, scale free Poisson error distribution, single scale parameter

 De Vylder model – origin and development parameters independent, calendar parameters zero, log 

link function, normal error distribution, single scale parameter

 Separation model – calendar and development parameters independent, origin parameters zero, log 

link function, normal error distribution, single scale parameter

 Mack’s additive –development parameters independent, origin and calendar parameters zero, scale 

parameter independent for each development period, identity link function, normal error distribution
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Modelling topics

Negative incremental values

 For the Poisson and Gamma error structures with a log link, some negative and zero incremental 

values may be permitted (depending on the parameterization), although all fitted values will be 

positive. Where a model fails, the presence of negative and zero values should be investigated, and 

some values excluded to ensure a good fit. In general, the identity link function should be avoided 

with the Poisson and Gamma error structures, which will fail if a fitted linear predictor is negative in 

any cell of the triangle.

 Where there are many negative incremental values, the normal error structure with an identity link 

function is the only one that may be suitable, since it offers support for negative values and allows 

negative fitted values (a log link will give positive fitted values). However, there is no guarantee that 

the fit or forecast values will be reasonable.

Scale parameter

 Usually with GLMs, the scale parameter is assumed to be constant. It is also possible to allow for 

heteroscedasticity by allowing the scale parameter to vary by development period. This is achieved by 

modelling the squared bias adjusted unscaled residuals using a second GLM with a log link and a 

Gamma error structure. Model fitting is via an iterative procedure known as joint modelling: the model 

for the mean provides the residuals used in the model for the scale parameters. The reciprocal of the 

fitted values from the model for the scale parameters is then used as weights in the model for the 

mean, and the process iterates until convergence.
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GLM

Model comparison

Evaluation of model fit

 T test if the difference of two successive parameters is significantly different from zero

 Model comparison

 Chi squared and F test for nested models with constant scale parameters - test of the significance 

of the difference in the parameters.

 AIC (Akaike’s information criterion)

 BIC (Schwarz’s Bayesian information criterion )

 Estimate of error
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Markov Chain Monte Carlo – probability distribution

 The aim of the Markov Chain Monte Carlo (MCMC) method is to derive an estimate of the full 

distribution of claim outcomes based on the results of a GLM model

 Whereas the GLM method provides maximum likelihood parameter estimates, MCMC methods 

provide a simulated distribution of parameters given the log likelihood specified by the underlying 

GLM model

 A distribution of forecasts is then generated by simulating from the assumed process distribution 

conditional on the parameters

 There are several MCMC algorithms: Gibbs with Adaptive Rejection Sampling, Single Component 

Adaptive Metropolis Hastings, Block Updating Metropolis Hastings, etc.
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Example

Model 1 - ODP

 Diagnostics: 

 Residuals, average observed vs fitted values and linear predictor of the model per: 

 Origin, development and calendar period.
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Example

Model 2 – also with independent calendar year parameters

 Diagnostics: 

 Residuals, average observed vs fitted values and linear predictor of the model per: 

 Origin, development and calendar period.
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Model comparison

Comparison of model 2 with model 1:

 Model 2 has a lower number of 

parameters

 Model 2 has a lower value of AIC and 

BIC

 Model 2 significantly lower total 

reserve

 Model 2 has significantly lower total 

reserve prediction error
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Model Model 2 ( with 

calendar 

parameters)

Model 1 (ODP-chain 

ladder)

Triangle Paid Claims Paid Claims

Exposure (none) (none)

Link Function Log Log

Error Distribution Poisson - Scale Free Poisson - Scale Free

Number of Parameters in Mean 17 29

Log Likelihood -1,652 -1,670

Deviance Scale 23,646 35,702

Pearson Scale 23,338 35,571

AIC 3,340 3,401

BIC 3,390 3,484

Total Ultimate 709,750,158 746,820,579

Total Reserve 266,430,798 303,501,219

Total Reserve Prediction Error 11,637,982 15,785,124
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GLM

MCMC

Comparison of MCMC results are presented in the table below (Metropolis Hastings – Single Component 

algorithm)

The trace plot and probability distribution of selected parameter are presented below
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Model 2 (with 

calendar parameters)
Model1 (ODP - chain 

ladder)

GLM Total Reserve 266,430,798 303,501,219

GLM prediction error 4.4% 5.2%

MCMC Total Reserve 266,077,051 304,204,641

MCMC prediction error % 4.4% 5.2%

MCMC 99.5% VaR % - ultimate view 12.1% 15.1%
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