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Introduction
Best estimate claim provisions

Basic reserving task — calculation of claim provisions

|
future and related expenses

The value of the claim provisions is a random variable
Concept of the best estimate of claim provisions

ratio method, etc.

portfolio development

Reserve distribution
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Claim provisions (IBNR + RBNS) should cover insured claims incurred in the past and settled in the

Chain ladder (or in general development factor method - DFM), Bornhuetter Ferguson, ultimate claim
Parametrization of method based on expert judgment, supported by qualitative information about

Uncertainty connected to the calculated claim provisions may pose considerable risk

N
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Claim provision 2
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Introduction
Ultimate vs one year view

Ultimate view
® Uncertainty related to claim provisions until run off of the claim provisions (all claims settled)

One year view
® Uncertinty related to claim provisions from the one year view
" One year view is identical to standard one year run off of claim provisions
" The sources of one year uncertainty are
= Actual vs expected claim payments during next year
" Recalculation of claim provisions after one year

R, =R, +C/’
Run off result=R,-R;-C;=(R,’+C,)-R,;-C,=(R,’-R;) + (C,”- C))
e R

Where Recalculation of claim Actual vs expected claim
provisions after one year payments during next year

® R, is claim provision at time i, i=0,1
® R,’is claim provision at time i according to expectation at time 0

® C, are actual claim payments between time 0 and time 1

= C,’ are actual claim payments between time 0 and time 1 according to expectation at time O
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Introduction
Distribution of claim provisions

Understanding and quantification reserve uncertainty

Estimate of single additional characteristics
® Mack formula — estimate of standard deviation for ultimate view
® Merz Withrich formula — estimate of standard deviation for one year view

® Mack and Merz Wuthrich formula are distribution free, estimates of percentiles require additional
distribution assumptions

Estimate of full distribution function of claim provisions
®  Stochastic methods
= Mack method, ODP method, etc. for ultimate view

= Parametrization of methods based on expert judgment, supported by qualitative information about
portfolio development

" The knowledge of the full distribution function allows quantification of uncertainty via different
measures, for example

" VaR (percentile)
"= TVaR
= Standard deviation
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Introduction
Application of risk quantification

Examples of application of risk quantification

Solvency Il internal model

Validation of technical provisions

Appropriateness of standard formula

IFRS 17 risk margin and disclosure

Reinsurance strategy

Asset liability matching

Own risk management and understanding of the risk and portfolio
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" The core data should be comparable, i.e. come from the same probabilityy distribution, therefore

" The set of pseudo data should have similar characteristics as the original data
" The pseudo data is created through random permutation with repeating

Creation of “more histories” of the random variable

Bootstrap approach
® Creation of pseudo data

Pseudo data

preliminary adjustments are sometimes necessary (for example standardization)

8

WillisTowers Watson Lil*"I'Ll

.com

willistowerswatson

ly.

nd Willis Towers Watson client use on

ed. Proprietary and Confidential. For Willis Towers Watson al

© 2018 Willis Towers Watson. All rights reserv



Bootstrap approach

Pseudodata in development triangle

Pseudodata = alternative development triangles

= ODP model

" The best estimate chain ladder development factors can be used to produce development triangle
with “best estimate history” — the factors are applied to the diagonal in reverse order

" The difference between the actual triangle and triangle with “best estimate history” provides
residuals to be used for bootstrapping (permuted standardized residuals create pseudo triangles)

" ODP model uses residuals coming from the difference of actual and “best estimate history”

incremental cumulative payments in particular cells

= Mack model

® Mack model uses residuals coming from the difference of actual and best estimate development
factors for particular accident and development periods

® Permuted standardized residuals are applied on the last diagonal to create pseudo triangle
" The residuals need to be standardized as their characteristics are different for particular triangle cells
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Bootstrap approach
Process error

" Pseudo datais a limited set and can produce only a limited set of results with in advance limited
cardinality

" The prediction variance can be expressed as:
prediction variance = estimation variance + process variance

® To capture also the process error, the bootstrapping can be enriched through “randomization”™
replacing values in an appropriate calculation step by a generated random value, this incorporates

also process error m

® This requires additional assumption
regarding the distribution function of
data

® Correctness of assumptions, especially
correctness of assumed model need to
be tested to minimize the model risk

willistowerswatson.com WillisTowers Watson 1:I"1'Lil 10
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Bootstrap approach
Outline of algorithm

Projection,
Random ‘randomization” =
permutation of replacing pseudo
standardized data, values by random
estimation error values, process
error

Recording results,
restarting process
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ODP model
Assumptions

Assumptions of ODP model
® OQver dispersed Poisson distribution of incremental values

" We assume that each incremental value [; ; in origin period i and development period j consists of a
systemic and random component and

E[IL,]] = mi,j Var[li’j] = d)mi’j
log(m;;)=m;; myj=c+a;+B; ar=p=0

Where

® Parameter ¢ is called scale parameter. It can be either constant for whole triangle or different for
particular development periods

= Coefficients a;, 8; can be found through the method of maximum likelihood. This can be short
calculated by chain ladder method.
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ODP model
Algorithm

1 Initial model fit
" The starting point is fitting chain ladder method.

" The chain ladder model is used to derive incremental fitted values m;; based on the observed
cumulative latest diagonal.

2 Calculation of residuals
® Calculate unscaled Poisson residuals

_ Ii,j — mi,j
Wij =— 71—
mi,j
® Calculate scale parameter
2
b= Lij Ui
n—p

Where
" nis number of fitted values (cells of underlying development triangle)
® pis number of parameters in chain ladder model
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ODP model
Algorithm

® Calculate standardized residuals and apply bias adjustment

_ ui'j n
rij —

._\/En_p

3 For each simulation

"= Create triangle of pseudo data — based on random permutation with repeating of residuals r;; from
those derived at step 2 above to calculate a pseudo triangle data value

" Re-apply chain ladder method based on the pseudo data to generate new projections and reserves

® Add process variance to projected future development — replace projected values by random values
from selected distribution

4 Calculate selected measure
distributions, percentiles, means and standard deviations for reserves and other items of interest
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Mack model
Assumptions

Statistical model underlying chain ladder, assumptions of Mack model same as chain ladder
" Expected value of cumulative value of claims

E[Ci,j+1|Ci,1J ey Ci,j] == f]Cl,j
® Variance of cumulative value of claims

Var[Ci,j+1|Ci,1' ---:Ci,j] = J'ZCiJ'

" Origin periods [C, ;,...,C;;] are independent

Where

" C; is cumulative value of claims in the origin period i and development period |
"= f;is the development factor for the development period |

" o;is the squared sigma for the development period |

Properties
" Pseudo data originate in values of development factors f;;

= The method is robust against negative incremental values (more suitable for incurred development
triangles than ODP)
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Mack model
Algorithm

1 Initial model fit
" The starting point is fitting chain ladder method.
® Subsequently Mack’s alpha squared is calculated as follows:

1
a? =— > [Ci(fi; — f; )]

n & n—p

Where

" n;is the number of included development factors at development |
" nis the sum of the n,

" pis the number of parameters in the chain ladder model

"= f; are the observed ratios of C,;,,/C;;
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Mack model
Algorithm

2 Calculation residuals
® Calculate residuals and apply bias adjustment

TG =) [
.

i,j
j n—p

3 For each simulation

"= Create triangle of pseudo data — based on random permutation with repeating of residuals r;; from
those derived at step 2 above to calculate a pseudo triangle data value

" Re-apply chain ladder method based on the pseudo data to generate new projections and reserves

® Add process variance to projected future development — replace projected value by random value
from selected distribution

4 Calculate selected measure
distributions, percentiles, means and standard deviations for reserves and other items of interest
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Practical stochastic

" The Practical stochastic method provides an alternative to the Bootstrap method for use in segments
where it is not possible to produce a sensible bootstrap method result, typically because of poor or
erratic data.

® [t requires the following inputs
= A vector of ultimate claims and a triangle basis to enable the expected reserves to be calculated
" A payment pattern vector to enable cash flows to be generated (if required)
" Coefficients of variation for each origin period
=  Assumptions regarding the correlation between reserves by origin period
® |n each simulation

" The ultimate claims are simulated for each origin period. Typically lognormal, normal or gamma
distributions are chosen

" The claim provisions are calculated as the difference of simulated ultimate and the last diagonal of
underlying cummulative development triangle

" The results per origin period are aggregated to total based on correlation matrix

" This method provides simulation results of claim provisions, but not stochastic cash flows for each
simulation (only constant distribution of unpaid claims based on input pattern vector)
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Stochastic run off
Re-reserving approach

1 Projection of next calendar period(s)

" The projection of next calendar period(s) is created for example by bootstrapping method. The
projections of the bootstrapping methods are a suitable input for the stochastic run off

2 Re-reserving based on triangle enhanced by next development period(s)
= “Actuary in a box” approach to re-reserving

" The re-reserving can be done based on several reserving methods, most frequently chain ladder or
Bornhuettter Ferguson and different parametrization of these methods

® Arealistic approach to re-reserving must be chosen

3 Calculate selected measure
(distributions, percentiles,
means and standard deviations
for reserves and other items of
interest)

B 2dd Stochastic Run-off Result: "Taylor and Ashe\Stochastic Run-off Result” - o IEH
| Basic Inputs | Triangle | Result Adjustment | Qutput | Notes | Audit Log
Future Periods © |1 e Simulation Index |1 e
12m 24m 36m 48m 60m 72m E4m 96m 108m 120m 132m
1995 766,940 610,542 482,940 527,326 574,398 145,342 139,950 227,229 67,948
1995 352,118 884,021 933,894 1,183,289 445745 320,996 527,804 266,172 475,045 115,142
1997 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405 392,191
1998 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286 275,887
1999 443,160 693,190 991,983 769,488 504,851 470,639 447,369
2000 396,132 937,085 B47 458 B05,037 705,960 215,663
2001 240,832 B47,631 1,131,398 1,063,269 914,111
2002 359,480 1,061,648 1,443,370 2,046,172
2003 376,686 986,608 752,312
2004 344014 1,223,445

Simulate ‘ l & appiy ‘ l o 0K ‘ |XCance|‘
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Stochastic run off
Emergence pattern approach

Emergence pattern approach

= Alternative to re-reserving, suitable especially if stochastic cash flows are not available, for example in
the case of Practical stochastic method (re-reserving cannot be used)

" The emergence pattern defines how the reserve uncertainty decreases over time. There are various
methods for calculation of the pattern

BaseReserve; . = SimulatedReserve; . — SimulatedCashflow, .

SimulationCount
(p5m BaseReserve; .

AverageReserve; =
g ' SimulationCount

RunoffReserve;, = SelectedPattern; » BaseReserve; .+ (1 — SelectedPattern;) + AverageReserve;

Where
" SimulatedReserve,  is the simulated reserve for origin period i and simulation s in the input method

= SimulatedCashFlow;  is the simulated cash flow for origin period i and simulation s in the input
method (based on average pattern)

= SelectedPattern; is item of the selected emergence pattern for origin period i

willistowerswatson.com WillisTowers Watson 1:I"1'Lil 21
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Practical example
Task definition

Task: Calculation of reserve risk SCR for segment based on the following development triangle of
claims paid

Bl Edit Triangle "Taylor and Ashe\Paid Claims" - o IES
Details | Data | Graph | Notes | Audit Log |
Transposed : Qrigin Length : (12 : Stored at: |12 3
i@ Development (7) Calendar Development Length - |12 | & | Stored at: |12 | § Decimal Places : [0 =
Accident Year 2am 36m 48m &0m 72m 84m S6m 108m 120m

TN 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948
1996 352,118 884 021 933804 1,183,289 445 745 320,006 527,804 266,172 475,046
1997 200,507 1,001,799 926219 1,016,654 750,816 146,023 495,002 280,405
1008 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286
1999 443 160 693,100 991,983 760,488 504 851 470,639
2000 396,132 937,085 847 408 805,037 705,960
2001 440,832 847631 1,131,398 1,063,269
2002 350480 1061648 1443370
2003 376,686 986,608
2004 344014
Total 3,671,385 8,287,172 7,661,003 6,883,077 3,207,180 1,865,009 1,376,424 686,527 652,275 67,948

’ Applv] ’ V' OK ] ’x{:ancel]

willistowerswatson.com WillisTowers Watson Ll"I'l:l 23
© 2018 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.



Practical example
Input data

» Approach to large claims
* Interpretation of differences between accident periods
* Choice of data type and analysis of input data

B Edit Triangle "Taylor and Ashe\Paid Claims” o IEH
Graph |Notes | Audit Log
Paid Claims Development - All Origin Periods
1,600,000 -
1905
&
1,400,000 - —— 1986
1,200,000 - 1997
" = 4508
z
4 ke
S 1,000,000 - 1999
=
£ 3000001 . -  20m0
£ - 200
B 600,000 # O i
&l o 2002
400,000 - / —  oom
Y
—-—
200,000 1 D L
R u} n]
o
(1] T T T T T T T T T T 1
0 1 2 3 4 5 3 7 8 9 10 11
Development Year

Input data (segment, data type)

DFM models review

Bootstrap model, ultimate view

.

Run off model, 1 year view

Testing

v

[ E Aeely I l W Ok I lx-::ancell

Results consolidation

willistowerswatson.com

© 2018 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

WillisTowers Watson L«l*"I*"ll 24




Practical example
DFM models review, analysis of residuals

7
» Parametrization of DFM method to be used by the bootstrap model.
_ _ o Input data (segment, data type)
» Expert judgments (exclusion of development factors, curve fitting for
the development factors, choice of final DFM method, tail factors) v
- Assumption checks of underlying DFM method -
ssumption checks of underlyin metho DEM models review
» The result of DFM must be reasonably close to the BE CP
Validation | Sensitivity | Residuals Data I Residuals Graphl
Show: Reserves Reserves % Change v 5td Errors | Coefficients of Variation 7 )
Accident Year (1) 12-22 (2) 2436 (3) 36-28 2) 48-60 5) 60-72 (6) 72-82 [7)8495  (3)9-108  (9) 108120 . .
1885 Ratio 20 154281 127830 123772 120821 104408 104037 1.06301 101772 BOOtStI‘ap mOdel y u |t| mate view
Standard Error 2,474,822 2,455,101 2,452,348 2,455,835 2,316,785 2,501,016 2,388,708 2,447 959 2,344,884
Coeff. of Variation 13.21% 13.08% 12.93% 13.27% 12.73% 13.15% 12.66% 12.83% 13.15% \ s
1996 Ratio 3.51058 175548 152520 113283 108429 112811 105727 1.08650 ¢
Standard Error 2,479,738 2,473,816 2,475,624 2,496,905 2,544,560 2,435,696 2,510,837 2,408,220 7 N\
Coeff. of Variation 13.28% 13.25% 13.38% 13.20% 13.53% 13.36% 13.49% 13.28%
1997 Ratio 220825 171672 145826 123208 103886 1.12001 1.06058 Run off mOdeI; 1 year view
Standard Error 2,414,818 2,476,285 2,512,448 2447723 2,459,038 2,479,831 2,464 839
Coeff. of Variation 13.02% 13.24% 13.45% 13.28% 12.83% 13.53% 13.29% \ s
1998 Ratio 2.56800 1.54705 171178 107252 108736 104708
Standard Error 2,392,469 2,451,643 2,261,617 2,411,253 2,548,542 2,498,620
Coeff. of Variation 12.92% 12.99% 12.45% 12.57% 13.55% 13.06% [ )
1899 Ratio 2.56420 187296 136158 117422 113831 TeStlng
Standard Error 2,409,911 2,452,884 2,497,617 2,498,872 2,502,371
Coeff. of Variation 12.76% 13.20% 13.24% 13.38% 13.58% \ J
2000 Ratio 3.36550 163568 135916 123644
Standard Error 2480630 2472177 2500871 2245103 v
Coeff. of Variation 13.26% 13.16% 13.26% 13.26% N\
2001 Ratio 292280 187810 143230 ; :
Seneratr e aese  2sies Results consolidation
Coeff. of Variation 13.07% 13.19% 13.44% J
2002 Ratio 3.05329 201565 \
Standard Error 2,458,337 2,375,433
Coeff. of Variation 13.22% 12.90%
2003 Ratio 3.61918
Standard Error 2477320
Coeff. of Variation 13.28%
willistowerswatson.com WillisTowers Watson L:I"1'Lil 25
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Practical example
DFM models review, analysis of residuals

,
i i ] v oo Input data (segment, data type)
T Origin Residuals :
> 2.0 ong v
1.5 . : - : _
101 ! T e DFM models review
: * % g X ¥ x x
0.5 1 XA ¥ Residual
0.0 o NG s , \
-0.5 : x ; b Bootstrap model, ultimate view
_1.0_ % x i i \ V
-1.51 x b ¢
i B 2 : O 1595 1956 1957 1958 1959 2050 2061 2062 2063 [ 1 )
Accidert vear Run off model, 1 year view
wity | Resiauais Data) Resiausis Grapn | \ y
Development Residuals ’
P 20 b P 4 A
1.5] : * —_—— Testing
1_0’ § X S J
X % x x X X
x \4
0.0 . - . )
¥ . .
-0.5] 3 . . < Results consolidation
2101 x % ! y
1.0 § £3 X X '
- 1.5 1 X x
e =20 ‘ ‘ ‘ ‘ - ‘ ‘ ‘ ‘
12m 24m 36m 48m 60m 72m 84m 96m 108m
Development Year
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Practical example
DFM models review, analysis of residuals

Validation Residuals Data| Residuals Graph

vl Show averages 5 Alph: -
v iv)
Calendar Residuals
207 :

1.5 x H

1.07 x X

0.5 . e
x

3
%%
5%

X

Input data (segment, data type)

X @ yerage Residuals

!

DFM models review

B3
3
%

0.0 > -
_0.57 X
_]..Oi % % %

-1.5; x x
- =20

x

1996 1997 1998 1999 2000 2001 2002 2003 2004

Calendar Year
Validation | Sensitivity | Residuals Data | Residuals Graph

Calculation Basis

) DFM Basis ) Bootstrap - Modified Mack @ Bootstrap - Default

significant arigin periods:
Significant development periods:
significant calendar periods: 2002
Total reserve : 15,680,556

(6) 72-84 [7) 84-96

147012
0.4104

8
25

18) 96-108

Accident Year (2) 24-36 313648 4] 48-60 (5) 60-72 (3) 108-120

{1)12-24

1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
Alpha Value

11718073 19.29198 2677879 2677879

8760229

422.00622 20316172 21204417 125.75979

Bootstrap model, ultimate view
Run off model, 1 year view
Testing
v
Results consolidation
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Practical example
Bootstrap model, ultimate view

» The Bootstrap method is used to produce the scenarios of
development of the ultimate claims

» The following choices must be made
* Choice of model (Mack, ODP)

* Adjustments to residuals and scale parameter (smoothing, zero
average residuals, etc)

* Scaling of the result (multiplicative, additive, user defined)

[llustration of scaling

9%
8%
%
6%
5%
4%
3%
2%
1%
0% ————--"”

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000

‘--

Reserve distribution (bootstrap) s BE TP
== BOOtStrap mean = == o Reserve distribution (scaled)

\

Input data (segment, data type)

S

DFM models review

Bootstrap model, ultimate view

Run off model, 1 year view

Testing

v

Results consolidation
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Practical example
Bootstrap model, ultimate view

Details | Residuals | simulation | Resuts | output [ notes | Audit Log

[Tied Tabs... | Input data (segment, data type)

Modified Mack Bias Adjustment Show Residual Scale Values Residual Scale Values Smoother Faorecast Scale Values Smoother L y
esidual Type: e 0 Smoothing Parameter: 80
[Scaled, Bias Adjusted, Zero-Average n
{F 7 N\
Residuals adjusted by +0.013466 to make mean zero
Accident Year {1)12-24 212436 (313648  (4)48-60 (516072 [6)72-84  ([7)8496 (396108  (9)108-120 [10)120-132 DFM models review
1995 -0.564 1.207 1.258 0.832 1653 -0.995 1470 1.087
1996 0.018 0.036 0.669 0,680 0373 1.070 0.410 0,807
1997 1.354 0.205 -0.007 0918 1.289 0.862 0,822
1998 1.577 1326 1.974 1.760 0329 1.061
1999 1647 0723 0.751 0,008 0.594 . .
2000 0222 0723 0,701 0948 Bootstrap model, ultimate view
2001 1.012 0,803 0.161
2002 0721 1.747
2003 0.196
v Show averages  |v| Show Alpha Values
o 5 OO Development Residuals (Scaled, Bias-Adjusted, Zero-Average) 0450 Run off model, 1 year view
15 ¥ 400 \ s
350
1.0 b < %
= 05 ® . 300 o 7 N
E 250 ==
O oo o - - ———————— Y — .l ... 1] .
3 o0 " 20 O Testing
e -0.
W 150 \ J
-1.0 \ ¥ 100
ES
- kS
15 3 ¥ T — =0 Y N
[ -2.0 0
12m 28m B am &m 72m aim 26m 108m . .
Development Year Results consolidation
. Alpha values - Unsmoothed y
. \
Alpha Values - Forecasting, Smoothed
o Average Residuals
® Residuals
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Practical example
Run off model, 1 year view

» Choice of approach
» Re-reserving approach
* Chain ladder

* Bornhuetter Ferguson with adjusted a priori ultimate claims and
pay out pattern

* Bornhuetter Ferguson with adjusted pay out pattern
* Bornhuetter Ferguson with no adjustments
* No re-reserving

« Emergence pattern approach

» Potential scaling of result, but average run off result should be close
to zero in principle

7

Input data (segment, data type)

N

S

DFM models review

Bootstrap model, ultimate view

.

Run off model, 1 year view

Testing

v

Results consolidation

willistowerswatson.com
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Practical example
Testing

» The stability can be tested with respect to all inputs and choices made:

Input data type

Number of diagonals

Parametrization of DFM method

Random seed

Number of simulations

Bootstrap model used

Choice of forecast distributions for process error
Scaling approach

The re-reserving method used

» Comparison with benchmarks

» Strategy and automation of testing convenient due to large amount of
possible tests

7

N

Input data (segment, data type)

S

DFM models review

Bootstrap model, ultimate view

.

Run off model, 1 year view

Results consolidation ]

J
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Practical example
Comparison of results — ultimate view

Parametrization Prediction [99.5% VaR
error % %

17.1% 51.3%

Model

Mack formula*

Mack formula*

Resampled f.d. 17.4%  48.5%
Normal .d. 17.6%  48.4%
Gamma f.d. 17.5%  49.4%
m Resampled f.d. 14.5% 40.7%
S Normal f.d. 14.4%  39.8%
R Gamma f.d. 14.4%  41.4%
Lognormal distribution, 0% correlation between origin periods, 14.5% 45.7%
stochastic CoV suggested by Mack formula

Normal distribution, 0% correlation between origin periods, CoV 14.5% 37.3%
stochastic suggested by Mack formula

Highest residual excluded 13.0% 39.0%
Resampled, highest residual excluded 13.2% 35.1%
m Resampled f.d., highest residual excluded 12.3% 33.3%
Practical Lognormal distribution, 0% correlation between origin periods, 10.6% 31.6%
stochastic CoV suggested by Mack formula with highest residual excluded

*99.5% VaR selected as 3 times prediction error (in line with standard formula)
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Practical example
Comparison of results — one year view

Model Parametrization Prediction
error %

Merz Wuthrich formula* 12.1%
S (eTea -1 (oR (V1o o) | M@l = [ CRTEETS1aV oo Mack model, resampled f.d. 12.5%

Stochastic run off, BF1 re-reserving lVEEglele[cIMEEETalol[loRNeb 5.3%
Stochastic run off, BF2 re-reserving VEWQelo[cIMEEETalol[leRNoR 6.7%
Stochastic run off, BF3 re-reserving VEEglelo[cIMEEETalol[loRNeR 8.6%
Stochastic run off, CHL re-reserving @Inlzlele[sIM ¢t :Tqqlo][To Rl 12.0%
S (eTea oIS\ i (R V1o o) | M@l = [ CCRTEETETaVi a0l Practical stochasticlognormal d. 10.8%
Merz Wuthrich formula* Highest residual excluded 9.2%

Stochastic run off, CHL re-reserving QVE® qglels CIMTEETgalol[=To R e I 9.6%
highest residual excluded

Stochastic run off, CHL re-reserving f@]nlzglele[s1M¢=IF:Taq]o] (1o | o I8 9.7%
highest residual excluded

Stochastic run off, CHL re-reserving {g@i[er=1RS (olel g1 1 (ol (oo [alel g F=1 1o I8 8.1%
highest residual excluded

*99.5% VaR selected as 3 times prediction error (in line with standard formula)
CHL - chain ladder
BF1 — Bornhuetter Ferguson with unchanged both pay out pattern and a priori ultimate claims

BF2 — Bornhuetter Ferguson with recalculation of pay out pattern and unchanged a priori ultimate claims

BF3 — Bornhuetter Ferguson with recalculation of both pay out pattern and a priori ultimate claims

99.5% VaR
%

36.4%
29.5%
12.5%
16.6%
20.7%
27.9%
22.5%
27.5%
23.4%

22.9%

17.9%
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Practical example

Claim payments development

Development of total claim
payments — ultimate view
simulation

Development of total claim
payments — one year view
simulation

vt | esduns

e LR ey vy ey

aled Resuts | Targets | Scaled Resuits | Discounting | Discounted Results | Disgnostics | Consolidation

P

Claim Amounts

Claim Amounts

| Casntiow summary | Casntiow Oetai | Aggregates | Ongin Comeistions | |

Unscaled Paid Claims Development - 2004

14,000,000

12,000,000

10,000,000

Paid Claims Development - 2004

10,000,000

&
Development Year

rrrrrrrrrrrr
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GLM
Model definition

" We assume that each incremental value |; ; in origin period i and development period j consists of a
systemic and random component and

E[Il‘]] = mi'j Var[li'j] = ¢V(ml’])
.= g 1. . R i +3i +i+j—1
ml,] - g (771,]) 771,] =c+ Zr:Z Ay ZS:Z ,Bs thz Vi
Where

® Parameter ¢ is called scale parameter. It can be either constant for whole triangle or different for
particular development periods

= Coefficients a, B,,y; can be found through the method of maximum likelihood. These are origin,
development and calendar year parameters.

® Vs variance function

= 1 for Normal random component

m, ; for Poisson random component

= mﬁj for Gamma random component
® Gis link function (identity or log link is often used in reserving)
" This model is overparametrized, all parameters cannot be independent
® Further, exposures can be assigned to each triangle cells
® The linear predictor is piecewise linear function
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GLM
Selection of parameters

Example of approach to parameters

= A parameter at a given period can be set to be independent, then its value needs to be estimated.
There will be a change of slope in the linear predictor (i.e. a new straight line segment).

® A parameter at a given period can be set to be the same as previous. The linear predictor continues
with the same slope as the previous period (for as many periods as parameter is unchanged).

= A parameter at a given period can be set to 0. In this case the linear predictor is flat.

The main task is to select the approach described above for each parameter

® This can be done through automated optimization, which includes parameters that are statistically
significant and exclude parameters that are not.

" There is no guarantee that a model that is a good fit to the observed data will be useful for forecasting
into the future, so care should be taken.

Choice and analysis of residuals (residuals also used for estimation of scale parameter)
® Pearson residuals
® Deviance residuals

willistowerswatson.com WillisTowers Watson Lil*"I'Ll 37
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GLM
Prediction error error

The prediction error is the square root of the mean squared error of prediction (MSEP) where

MSEP = /E[(I—i)2]= JVar(1)+Var(f)

For a single cell, the MSEP is given by

MSEP; ; = J Var(1; ;) + Var(m ;)

and for an origin period reserve or total reserve, the MSEP is given by:

MSEP = j Var (Z I; j> + Var(z ;)
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GLM
Special cases of GLM model

The general definition of model covers several model types, for example:

® ODP chain ladder — origin and development parameters independent, calendar parameters zero, log
link function, scale free Poisson error distribution, single scale parameter

" De Vylder model — origin and development parameters independent, calendar parameters zero, log
link function, normal error distribution, single scale parameter

= Separation model — calendar and development parameters independent, origin parameters zero, log
link function, normal error distribution, single scale parameter

" Mack’s additive —development parameters independent, origin and calendar parameters zero, scale
parameter independent for each development period, identity link function, normal error distribution
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GLM
Modelling topics

Negative incremental values

For the Poisson and Gamma error structures with a log link, some negative and zero incremental
values may be permitted (depending on the parameterization), although all fitted values will be
positive. Where a model fails, the presence of negative and zero values should be investigated, and
some values excluded to ensure a good fit. In general, the identity link function should be avoided
with the Poisson and Gamma error structures, which will fail if a fitted linear predictor is negative in
any cell of the triangle.

Where there are many negative incremental values, the normal error structure with an identity link
function is the only one that may be suitable, since it offers support for negative values and allows
negative fitted values (a log link will give positive fitted values). However, there is no guarantee that
the fit or forecast values will be reasonable.

Scale parameter
® Usually with GLMs, the scale parameter is assumed to be constant. Itis also possible to allow for

heteroscedasticity by allowing the scale parameter to vary by development period. This is achieved by
modelling the squared bias adjusted unscaled residuals using a second GLM with a log link and a
Gamma error structure. Model fitting is via an iterative procedure known as joint modelling: the model
for the mean provides the residuals used in the model for the scale parameters. The reciprocal of the
fitted values from the model for the scale parameters is then used as weights in the model for the
mean, and the process iterates until convergence.
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GLM
Model comparison

Evaluation of model fit

" T test if the difference of two successive parameters is significantly different from zero
" Model comparison

® Chisquared and F test for nested models with constant scale parameters - test of the significance

of the difference in the parameters.
= AIC (Akaike’s information criterion)
" BIC (Schwarz’s Bayesian information criterion )
= Estimate of error

willistowerswatson.com
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GLM
Markov Chain Monte Carlo — probability distribution

" The aim of the Markov Chain Monte Carlo (MCMC) method is to derive an estimate of the full
distribution of claim outcomes based on the results of a GLM model

" Whereas the GLM method provides maximum likelihood parameter estimates, MCMC methods
provide a simulated distribution of parameters given the log likelihood specified by the underlying
GLM model

® Adistribution of forecasts is then generated by simulating from the assumed process distribution
conditional on the parameters

" There are several MCMC algorithms: Gibbs with Adaptive Rejection Sampling, Single Component
Adaptive Metropolis Hastings, Block Updating Metropolis Hastings, etc.
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GLM
Example

Model 1 - ODP

" Diagnostics:
" Residuals, average observed vs fitted values and linear predictor of the model per:
® QOrigin, development and calendar period.

| Show averages o .= AVerage Observed and Fitted Values By Accident Yeai o o Linear Predictor Values By Accident Year hd

e Origin Residuals (Scaled, Bias-Adjusted, Zero-Average) 7 somm 13.7
. ¥ asmom = Fitted Values 136
JRap— s 13.5

R — Observed 13.4
B Values 133
mm 13.2
sz 131
v 13.0
wamam 129

]

asmom

n Basdual

e Aecidant Vesr Becidant Vear

= i < o) i i L)
/| Show averages Show Scale Values O Average Observed and Fitted Values By Development Year o i Linear Predictor Values By Development Year

. y_o Development Residuals (Scaled, Bias-Adjusted, Zero-Average) < ~omam

[~ Fitted Values

-— e
£ Residuals somom

] A 5 B = * — Observed
[ : M 3 . i sz Values

% Resdual

Dwaicgmant aar Development Yeas Devadopmant Vear
o mmco Average Observed and Fitted Values By Calendar Year < Linear Predictor Values By Calendar Year <

Calendar Residuals (Scaled. Bias-Adjusted. Zero-A ) v e ]
F] apmom [~ Fitted Values

i Y —
Tadiali 2omox

— Observed
Values

w Sadul 2omom

[ Catendar Vesr Cadendar Year
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GLM
Example

Model 2 — also with independent calendar year parameters

" Diagnostics:
" Residuals, average observed vs fitted values and linear predictor of the model per:
® QOrigin, development and calendar period.

7 Show averages [ wmmAverage Observed and Fitted Values By Accident Yeaf’ L o13al Linear Predictor Values By Accident Year 7
i Origin Residuals (Scaled, Bias-Adjusted, Zero-Average) o s 13.7
-: B asmmn = Fitted Values 136
. — e 13.5
i § Eoowo .k e e — Observed 13.4
A P P - e Values 13.3
TN N T S BT 13.2
¥ ] H H 4 ! x 4 B 131
i J oot 5 — 130
® 1omom 129
L L 128
Accident Ve Accdent Year Agchdent Year
| Show averages Show Scale Values o mno Average Observed and Fitted Values By Development Year b o . U Linear Predictor Values By Development Year o
. ,_C' Development Residuals (Scaled, Bias-Adjusted, Zero-Average) o 1oz —
. « -~ Fitted Values
amam
-—Ammge
Rasiduals somom
— Observed
_— Ao Values
*  Resduls s
e
C L .
Dwsizgmant Tawr Devalogment Year Dawlopment Year
| Show averages o s;\x;\xo Average Observed and Fitted Values By Calendar Year 2 o __;O Linear Predictor Values By Calendar Year o
= Calendar Residuals (Scaled, Bias-Adjusted, Zero-Average) 2 i -
by * azmem [ Fitted Values o
;; — g asmam :
2 o .
- s o — Observed
os B Values | 00 G maommmemm e ommmmmmme s ommmommosomesonmmoom e e
e *  Resduls e
as s
= -
az smm o
as
z D D
e Tew Calendar Year Cabendar Year
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GLM
Model comparison

Comparison of model 2 with model 1: Model 2 ( with Model 1 (ODP-chain
= Model 2 has a lower number of calendar ladder)
parameters)
parameters _ - - - -
Paid Claims Paid Claims
® Model 2 has a lower value of AIC and
BIC (none) (none)
" Model 2 significantly lower total —— _ ,
Error Distribution Poisson - Scale Free Poisson - Scale Free
reserve
L Number of Parameters in Mean 17 29
" Model 2 has significantly lower total —
. Log Likelihood -1,652 -1,670
reserve predlctlon error
23,646 35,702
AIC 3,340 3,401
BIC 3,390 3,484
Total Ultimate 709,750,158 746,820,579
266,430,798 303,501,219
Total Reserve Prediction Error 11,637,982 15,785,124
willistowerswatson.com WillisTowers Watson Lil*"I'Ll 45

© 2018 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.



GLM
MCMC

Comparison of MCMC results are presented in the table below (Metropolis Hastings — Single Component

Model 2 (with Modell (ODP - chain
calendar parameters) ladder)

algorithm)

GLM Total Reserve 266,430,798 303,501,219
GLM prediction error 4.4% 5.2%
MCMC Total Reserve 266,077,051 304,204,641
MCMC prediction error % 4.4% 5.2%
MCMC 99.5% VaR % - ultimate view 12.1% 15.1%

The trace plot and probability distribution of selected parameter are presented below

Parameter: 09 09 - Probability Density

Probability Density

) 1
000 005 010 015 [
Simulation Parameter Vaiue

i
g
g
£
i
-§4
g
§
i
g
§
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