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Preliminaries

Basic concepts

Let (Jt)t≥0 denote a Markov jump process on a state space {1, . . . , p, p+ 1},
where states 1, . . . , p are transient and p+ 1 absorbing.

Transition probabilities

pij(s, t) = P(Jt = j|Js = i), i, j ∈ {1, . . . , p+ 1},

Intensity:

Λ(t) =

(
T (t) ttt(t)

0 0

)
∈ R(p+1)×(p+1) , t ≥ 0 ,

implies that

P (s, t) =

t∏
s

(I+Λ(u)du) := I+

∞∑
k=1

∫ t

s

∫ uk

s
· · ·
∫ u2

s
Λ (u1) · · ·Λ (uk) du1 · · · duk,

for s < t, where Λ(t) is an intensity matrix.

If the matrices T (s) and T (t) commute for any s < t we may write

P (s, t) =

(
exp

(∫ t
s T (u)du

)
eee− exp

(∫ t
s T (u)du

)
eee

0 1

)
, s < t.
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Preliminaries

Basic Concepts II

Initial distribution
πππ = (π1, . . . , πp).

Inhomogeneous phase-type distributed random variable:

Y = inf{t > 0 : Jt = p+ 1}.

Assumption 1:
T (t) = λ(t)T ,

with λ(t) some positive function.

Assumption 2: the map

y 7→
∫ y

0
λ(s)ds ∈ (0,∞), ∀y > 0,

converges to infinity as y →∞.

Assumption 3: The function λ is parametric.
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Preliminaries

Sub-intensity structures

0 1 p + 1π1 = 1 t1

(a) Exponential

1 2 p0 p + 1π1 = 1 t12 tp

(b) Erlang

0

2 3 p1

p + 1

π1 π2 π3 πp

t3t2t1 tp

(c) Hyper-exponential

1 2 p0

p + 1

t12π1 = 1

t1 t2 tp

(d) Coxian

Figure: Underlying Markov structures. Names are borrowed from the corresponding PH
representations, but apply to our inhomogeneous setup as well. The state 0 is added for
schematic reasons, but is not part of the actual state-space of the chain.

Martin Bladt Faculty of Business and Economics, University of Lausanne

Phase-type regression



PH distributions Proportional intensities Extended proportional intensities PH Mixture-of-Experts Conclusion

Preliminaries

Properties and tail behaviour

Dense (weak convergence) on all positive distributions.

Proposition

Let Y ∼ IPH(πππ,T , λ). Then the survival function SY = 1− FY (y), density fY ,
hazard function hY and cumulative hazard function HY of Y satisfy, respectively,
as t→∞,

SY (y) = πππ exp

(∫ y

0
λ(s)ds T

)
eee ∼ c1[g−1(y)]n−1e−χ[g−1(y)],

fY (y) = λ(y)πππ exp

(∫ y

0
λ(s)ds T

)
ttt ∼ c2[g−1(y)]n−1e−χ[g−1(y)]λ(y),

hY (y) ∼ cλ(y),

HY (y) ∼ kg−1(y),

where c1, c2, c, k are positive constants, −χ is the largest real eigenvalue of T and
n is the dimension of the Jordan block associated to χ. Here g−1(y) =

∫ y
0 λ(s).
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Preliminaries

Parametrizations

λ(t) g(y) Parameters Domain

Matrix-Pareto (t+ β)−1 β (exp(y)− 1) β > 0

Matrix-Weibull βtβ−1 y1/β β > 0

Matrix-Lognormal
γ(log(s+1))γ−1

s+1 exp(y1/γ)− 1 γ > 1

Matrix-Loglogistic θtθ−1/(tθ + γθ) γ(exp(y)− 1)1/θ γ, θ > 0

Matrix-Gompertz exp(βt) log(βy + 1)/β β > 0

Matrix-GEV - µ+ σ(y−ξ − 1)/ξ µ ∈ R, σ > 0, ξ ∈ R
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Preliminaries

Example: FreMPL severity (Marginal)

Datasets freMPL1, freMPL2, freMPL3, freMPL4. Total 7008 claim severities for
about 30,000 policies in 2004. 18 covariates (for later...)

Figure: AIC: 121311; 119247; 119231; 119142. p = 3, 20. Estimation using matrixdist,
in CRAN.
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Preliminaries

From marginal to conditional specifications

SY (y) = πππ exp

(∫ y

0

λ(s)ds T (XXX)

)
eee

Proportional Intensities (Non-life insurance)
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Preliminaries

From marginal to conditional specifications

SY (y) = πππ exp

(∫ y

0

λ(s,XXX)T (XXX)ds

)
eee

Extended Proportional Intensities (Mortality modeling)
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Preliminaries

From marginal to conditional specifications

SY (y) = πππ(XXX) exp

(∫ y

0

λ(s)ds T

)
eee

Mixture-of-Experts (Non-life insurance)
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Theory

Proportional intensities

Since λ( · ; θ) is a parametric non–negative function depending on the
parameter θ, we incorporate the predictor variables XXX = (X1, . . . , Xd) by
specifying

λ(t |XXX,βββ) = λ(t; θ)m(XXXβββ), t ≥ 0, (1)

where mβ(Xγγγ) is a positive-valued function of the score Xβββ.

Example:
m(XXXβββ) = exp(Xβββ)

is a natural choice.

The conditional mean can be written on the form

µ(Y |XXX) =

∫ ∞
0

πππ exp

(
m(XXXβββ)

∫ y

0
λ(s; θ)dsT

)
eee dy. (2)
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Theory

Special cases

A simple special case is obtained by the following choices, giving a Gamma GLM
with canonical link: take T = −1, and λ ≡ 1 to receive

µ(Y |XXX) =

∫ ∞
0

exp(−m(XXXTβββ)y) dy =
1

m(XXXTβββ)
.

Another slightly more complex special case is that of regression for Matrix-Weibull
distributions, which contains the pure PH specification (when λ ≡ 1). In this
setting it is not hard to see that

µ(Y |XXX) =

∫ ∞
0

πππ exp
(
m(XXXTβββ)T yθ

)
eee dy =

Γ(1 + θ−1)πππT−θ
−1
eee

m(XXXTβββ)θ−1
. (3)
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Theory

Estimation

Define g as

g−1(y|θ) =

∫ y

0
λ(s; θ)ds

so that

Z = g−1(Y/m(XXXβββ) | θ) ∼ PH(πππ,T ) . (4)

Define: Bk be the number of times that the underlying jump-process {Jt}t≥0

initiates in state k.Nks the total number of jumps from state k to s. Nk the
number of times that we reach the absorbing state p+ 1 from state k. Zk be
the total time that the underlying Markov jump process spends in state k
prior to absorption.

Complete likelihood:

Lc(πππ,T ;zzz) =

p∏
k=1

πk
Bk

p∏
k=1

∏
s 6=k

tks
Nkse−tksZk

p∏
k=1

tk
Nke−tkZk , (5)

with explicit maximum likelihood estimators.
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Theory

Estimation II

Step 1: (E-step) compute the statistics

E(Bk | Z = zzz) =
N∑
i=1

πkeeek
T exp(T zi)ttt

πππ exp(Txi)ttt

E(Zk | Z = zzz) =
N∑
i=1

∫ zi
0 eeek

T exp(T (zi − u))tttπππ exp(Tu)eeekdu

πππ exp(T zi)ttt

E(Nks | Z = zzz) =
N∑
i=1

tks

∫ zi
0 eeesT exp(T (zi − u))tttπππ exp(Tu)eeekdu

πππ exp(T zi)ttt

E(Nk | Z = zzz) =
N∑
i=1

tk
πππ exp(T zi)eeeyk

πππ exp(T zi)ttt
.

Computational tricks are needed for M.E. and integrals of M.E.
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Theory

Estimation III

Step 2: (M-step)

π̂k =
E(Bk | Z = zzz)

N
, t̂ks =

E(Nks | Z = zzz)

E(Zk | Z = zzz)

t̂k =
E(Nk | Z = zzz)

E(Zk | Z = zzz)
, t̂kk = −

∑
s 6=k

t̂ks − t̂k.

Step 3: (Inhomogeneity optimization)

(θ̂, β̂ββ) = arg max
(θ,βββ)

N∑
i=1

log(fY (yi; π̂ππ, T̂ , θ,βββ))

= arg max
(θ,βββ)

N∑
i=1

log

(
m(xxxiβββ)λ(y; θ)πππ exp

(
m(xxxiβββ)

∫ y

0
λ(s; θ)ds T

)
ttt

)
and re-transform data.
Iterating the above three steps is an increasing EM algorithm.
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Theory

Inference

Problem: πππ and T are non-identifiable. Proposed solution: use partial likelihood.
Let `yyy(βββ, θ) be the log-likelihood function of the observed severities
yyy = (y1, . . . , yN ) with rating factors xxx = (xxx1, . . . ,xxxN ). As N →∞,

(̂βββ, θ)
d
≈ N ((βββ, θ), I−1),

where

[I]jk =


∑N
i=1G1(i, j|πππ,T ,βββ, θ,yyy,xxx)G1(i, k|πππ,T ,βββ, θ,yyy,xxx) 1 ≤ j, k ≤ d,∑N
i=1G1(i, j|πππ,T ,βββ, θ,yyy,xxx)G2(i|πππ,T ,βββ, θ,yyy,xxx) 1 ≤ j ≤ d, k = d+ 1,∑N
i=1G

2
2(i|πππ,T ,βββ, θ,yyy,xxx) j = k = d+ 1.

(6)

and

G1(i, j|πππ,T ,βββ, θ,yyy,xxx) = xijm
′
(xxx

T
i βββ)

 1

m(xxxT
i
βββ)

+
πππ exp

(
m(xxxTi βββ)h(y; θ)T

)
h(yi; θ)Tttt

πππ exp
(
m(xxxT

i
βββ)h(yi; θ) T

)
ttt

 ,

G2(i|πππ,T ,βββ, θ,yyy,xxx) =

d
dθ
λ(yi; θ)

λ(yi; θ)
+
πππ exp

(
m(xxxTi βββ)h(yi, θ)T

)
m(xxxTi βββ)

d
dθ
h(yi, θ)Tttt

πππ exp
(
m(xxxT

i
βββ)h(yi; θ)T

)
ttt
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Application

Example: FreMPL severity

Note: 18 covariates and all their levels were pre-processed using decision trees.

Figure: Coefficients and p-values of IPH and GLM regression. For display: IPH
coefficients multiplied by −1 and intercept of GLM omitted.
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Application

Example: FreMPL severity

Note: 18 covariates and all their levels were pre-processed using decision trees.

Figure: Coefficients and p-values of IPH and GLM regression. For display: IPH
coefficients multiplied by −1 and intercept of GLM omitted.
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Application

Example: FreMPL severity

Note: 18 covariates and all their levels were pre-processed using decision trees.

Figure: Coefficients and p-values of IPH and GLM regression. For display: IPH
coefficients multiplied by −1 and intercept of GLM omitted.
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Application

Example: FreMPL severity

Even if Information Criteria are bad for PH:

Table: Summary for GLM and PH regression models for the freMPL dataset.

Gamma GLM Pareto PH reg. Weibull PH reg.
Log Likelihood −60, 368 −59, 464 −59, 446
Degrees of freedom 26 34 34
AIC 120, 788 118, 996 118,961
BIC 120, 966 119, 229 119,194
Num. obs. 7, 008 7, 008 7, 008
Loss-ratio (pure) 101.03% 105.18% 101.13%

Quantiles can be shown to provide much better performance.
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Application

Example: FreMPL severity (with rating factors)

Figure: Ordered PIT’s from equation (??) versus uniform order statistics for the French
MPL dataset. KS refers to the Kolmogorv-Smirnov statistic for testing uniformity
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Theory

Extended proportional intensities specification

Now λ( · ;θθθ) is a parametric non–negative function depending on the vector θθθ,
and we incorporate the predictor variables XXX = (X1, . . . , Xd) by specifying

λ(t |XXX,βββ,γγγ) = λ(t;θθθ(Xγγγ))m(XXXβββ), t ≥ 0, (7)

where θθθ(Xγγγ) is a vector-valued function mapping the score Xγγγ to the
parameter space of λ.

Example:
θθθ(Xγγγ) = exp(γ0 + Xγγγ)

is a natural choice. Here, an intercept makes sense.

λ according to a Gompertz tail will be used throughout (mortality!)
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Theory

Estimation strategy

The E and M steps remain the same, and the inhomogeneity optimization
changes to

(β̂ββ, γ̂γγ) = arg max
(βββ,γγγ)

{
N∑
i=1

log

(
m(xxxiβββ)λ(y;θθθ(xxxiγγγ)) π̂ππ exp

(
m(xxxiβββ)

∫ y

0

λ(s;θθθ(xxxiγγγ))ds T̂

)
t̂tt

)
However, mortality modeling requires equal weighting for each age.

Hence, we use the EM algorithm as a good initial guess, and we design
another fitting procedure.
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Theory

Estimation strategy II

Define loss function:

`(πππ,T , f |µµµ) =
N∑
x=0

L (µg(x), µx) ,

where µx is the observed mortality at age x and µg is the hazard rate of the
EPI model.

We found that L(µ, ν) = (log(µ)− log(ν))2 is a good choice. We get

`(πππ,T , f |µµµ) =
N∑
x=0

(log(C(x|πππ,T , f)) + log(µf (x))− log(µx))2,

with the correction factor

C(x|πππ,T , f) =

πππ exp

(
T

∫ x

0
µf (s)ds

)
ttt

πππ exp

(
T

∫ x

0
µf (s)ds

)
eee

.

EPI model will have a lower likelihood than the one arising from the EM
algorithm!
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Application

Example: Danish female mortality

Figure: Fitted IPH distributions to Danish female mortality data.

The probability to reach last state p = 10 before death is 0.299.
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Application

Example: Japan vs USA female mortality

Figure: PI model applied to country as a covariate.

Regression parameters: βββ = (0.91), θθθ = (2.28,−0.07). (USA=1,Japan=0)
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Application

Time as covariate

Classical model Lee-Carter (non-parametric):

log(µx,t) = ax + bxkt + εx,t,

where εx,t are Gaussian random variables. The ax term is estimated as the
average log-mortality over time at each age x, and then bx and kt are
computed from a singular value decomposition of log(µx,t)− ax.

EPI model is parametric. As x grows,

log(µx,t) ≈ a+ bx,t + kt,

where a = log(c) is a constant which depends on the parameters πππ and T ,
bx,t = log(λ(x; exp(θ0 + θ1t∗))) = exp(θ0 + θ1t∗) log(x), and kt = β1t∗.

For smaller x:

log(µx,t) = bx,t + log

(
πππ exp

(∫ x

0
exp(bs,t + kt)ds T

)
ttt

)
− log

(
πππ exp

(∫ x

0
exp(bs,t + kt)ds T

)
eee

)
.
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Application

Danish females

Figure: PI model using time as a covariate, plotted for 1960, 1980 and 2000.

Regression parameters: βββ = (−22.54) θθθ = (1.92, 2.94). LC overfits!
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Theory

PH Mixture-of-Experts

Define the mapping
πππ : D ⊂ Rd → ∆p−1 ,

where ∆p−1 = {(π1, · · · , πp) ∈ Rp |
∑
k πk = 1 and πk ≥ 0 for all k} is the

standard (p− 1)-simplex.
For any given xxx ∈ Rd, we endow the process with the initial probabilities

P(J0 = k) = πk(xxx) := (πππ(xxx))k , k = 1, . . . , p ,

and P(J0 = p+ 1) = 0.
Note that

Y = inf{t > 0 : Jt = p+ 1} ,
satisfies that

Y ∼ IPH(πππ(xxx),T , λ) ⇔ J0 ∼ πππ(xxx) .

Definition

Let XXX be a d-dimensional vector of covariates. Then we say that

Y |XXX ∼ IPH(πππ(XXX),T , λ)

is a phase-type mixture-of-experts (PH-MoE) model.
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Theory

Properties

Mixture of IPH distributions:

P(Y > y|XXX = xxx) =

p∑
k=1

P(Y > y|J0 = k)πk(xxx) .

Marginals are always IPH:

Proposition

Let XXX be a random vector in a convex D ⊂ Rd. Then the PH-MoE model has
marginal distribution given by

IPH(πππ(xxx∗),T , λ) ,

for some xxx∗ ∈ D. In fact, πππ(xxx∗) = E(πππ(XXX)).

Hence, we use it in its conditional form.
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Theory

Softmax parametrization

Definition

We say that the PH-MoE model with initial probabilities
πππ(XXX;ααα) = (πk(XXX;ααα))k=1,...,p given by

πk(XXX;ααα) =
exp(XXXTαααk)∑p
j=1 exp(XXXTαααj)

, k = 1, . . . , p , (8)

satisfies the softmax parametrization. Here, αααk ∈ Rd, k = 1, . . . , p, and

ααα = (αααT
1 , . . . ,ααα

T
p )T ∈ R(p×d)

.

For any k, j ∈ {1, . . . , p},

log

(
πk(XXX;ααα)

πj(XXX;ααα)

)
= XXXT (αααk −αααj) =

d∑
i=1

Xi(αki − αji) .
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Theory

Denseness properties

Definition

Let W1, . . . ,Wn be positive and continuous random variables having otherwise
arbitrary distributions, and let η ∈ {1, . . . , n} be a multinomial random variable,
such that

Wi⊥⊥Wj , ∀i 6= j , and Wi⊥⊥XXXη , ∀i .

and such that XXX contains at least an intercept. Then we say that Wη |XXX follows a
multinomial mixture distribution.

Proposition

Let W |XXX follow a multinomial mixture distribution. Then there exist PH-MoE
models (Ym|XXX)m≥0 such that

Ym|XXX
d→W |XXX , m→∞ .

Moreover, the softmax parametrization may be chosen.
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Theory

Denseness properties II

Definition

Let A be the set of possible values of the covariates XXX. A severity regression
model is the set of laws of

Y |XXX = xxx , xxx ∈ A .

Condition

A regression model is said to satisfy the tightness and Lipschitz conditions on A if
{P(Y ∈ · |XXX = xxx)}xxx∈A is a tight family of distributions, and for each y ≥ 0, the
function xxx 7→ P(Y ≤ y |XXX = xxx) is Lipschitz continuous in A.

Proposition

Let a regression model satisfy the tightness and Lipschitz conditions on
A = {1} × [a, b]d−1, a, b ∈ R. Then there exists a sequence of PH-MoE regression
models converging uniformly weakly to it.

Proof: Similar to Fung et al. (2019).
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Theory

Estimation

Completely observed likelihood:

Lc(πππ,T |zzz,xxx)

=
N∏
i=1

Lc(πππ,T |zi,XXX = xxxi)

=
N∏
i=1

p∏
k=1

πk(xxxi)
Bk(xxxi)

p∏
k=1

∏
l6=k

tkl
Nkl(xxxi) exp(−tklVk(xxxi))

p∏
k=1

tk
Nk(xxxi) exp(−tkVk(xxxi))

= · · ·

=

(
N∏
i=1

p∏
k=1

πk(xxxi)
Bk(xxxi)

)
p∏
k=1

∏
l 6=k

tkl
Nkl exp(−tklVk)

p∏
k=1

tk
Nk exp(−tkVk) ,

with

Nkl :=

N∑
i=1

Nkl(xxxi) , Vk :=
N∑
i=1

Vk(xxxi) , Nk :=
N∑
i=1

Nk(xxxi) .
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Theory

Estimation II

The E- and M-steps are very similar (although not identical) to the PI case.

One distinction is the optimization of the πππ function:

π̂ππ(·) = arg max
πππ(·)∈∆p−1

(
N∏
i=1

p∏
k=1

πk(xxxi)
E(Bk(xxxi)|Z=zi,XXX=xxxi)

)
,

where as before ∆p−1 is the standard (p− 1)-simplex.

The latter step corresponds to a weighted multinomial regression.

Then finally optimize the inhomogeneity function as before.
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Asymptotic normality

Theorem

Let λ, ηηη := (ααα,θθθ,T ) be such that the log-density

y 7→ log

[
πππ(ααα) exp

(∫ y

0
λ(s;θθθ)dsT

)
ttt λ(x;θθθ)

]
, y > 0,

satisfies standard assumptions from Lehmann and Casella (2006). As n→∞,

1 There exist consistent solutions η̂ηηn to the likelihood equations.

2 The following convergence holds:

√
n (η̂ηηn − ηηη)

d→ N (000,I−1),

where I is the information matrix.

3 The j-th parameter is asymptotically efficient:

√
n (η̂jn − ηj)

d→ N (0, [I−1]jj).

In practice, we use partial likelihood.
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Transforms

Different tail behaviour can arise for subpopulations.

We may use global models.

We may use the following:

Definition

We say that a PH-MoE model is semi-composite if its intensity function is of the
form

λ(t) =

{
λ1(t) , t ≤ y0 ,
λ2(t) , t > y0 ,

for any two intensities λ1, λ2.

Proposition

For a semi-composite PH-MoE we have that

FY |XXX(y|xxx) =

{
πππ(xxx) exp(T g−1

1 (y))eee , y ≤ y0 ,

πππ(xxx) exp((g−1
2 (y) + g−1

1 (y0)− g−1
2 (y0))T )eee , y > y0 .
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Simulation

We simulate 2000 observations divided into 4 groups of size 500, each having
distributions as follows:

Group A: Yi ∼ Γ(shape = 1, scale = 3), Group B: Yi ∼ Γ(shape = 3, scale = 9),

Group C: Yi ∼ Γ(shape = 1, scale = 9), Group D: Yi ∼ Γ(shape = 3, scale = 3).

Estimated initial probabilities of a p = 3 homogeneous PH-MoE:

πππ(Group A) = (0.976, 0.000, 0.013, 0.000, 0.011),

πππ(Group B) = (0.000, 0.007, 0.000, 0.993, 0.000),

πππ(Group C) = (0.328, 0.094, 0.324, 0.173, 0.080),

πππ(Group D) = (0.000, 0.000, 0.976, 0.000, 0.024).

Martin Bladt Faculty of Business and Economics, University of Lausanne

Phase-type regression



PH distributions Proportional intensities Extended proportional intensities PH Mixture-of-Experts Conclusion

Application

Simulation II

Figure: Fitted densities for each group of the simulated data, for the PH-MoE and
GLM models.
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Simulation II

Figure: Fitted densities for each group of the simulated data, for the PH-MoE and
GLM models.
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FreMTPL severities

French Motor Third Party Liability datasets freMTPLfreq and freMTPLsev.
Total of 413, 169 motor insurance policies, with 15, 390 claims.

For numerical reasons, we also divide the claim size by 104.

p = 5 again. We select the following covariates:
1 Power: The power of the car, an ordered categorical variable with values: d, e,

f, g, h, i, j, k, l, m, n, o.
2 Region: The policy region in France, based on the 1970-2015 classification.

Possible values associated with the excesses are: Aquitaine, Basse-Normandie,
Bretagne, Centre, Haute-Normandie, Ile-de-France, Limousin,
Nord-Pas-de-Calais Pays-de-la-Loire, Poitou-Charentes.

We consider excesses above a threshold: PH-MoE routine can be slow for
large p (say, above 10), n (in the tens of thousands) and d (more than 20
covariates).
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FreMTPL severities II

Figure: French MTPL full data.
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FreMTPL severities II

Figure: French MTPL full data.

Martin Bladt Faculty of Business and Economics, University of Lausanne

Phase-type regression



PH distributions Proportional intensities Extended proportional intensities PH Mixture-of-Experts Conclusion

Application

FreMTPL severities III

Pareto PH-MoE Semi-composite PH-MoE Log-normal
Log Likelihood 753.74 752.48 607.22
Degrees of freedom 110 110 22
AIC −1,287 −1, 284 −1, 170
BIC −634 −631 −1,039
Num. obs. 2, 804 2, 804 2, 804

Table: Summary for PH-MoE and log-normal regression models for the freMTPL
dataset.
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FreMTPL severities IV

Figure: PP-plots for the fitted regression models (left panel), and fitted intensity
functions for the PH-MoE models (right panel).
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Conclusion and outlook

If your data has an odd shape or tail, phase-type regression likely helps.

Easy to interpret.

Most software either already or soon-to-be in CRAN (package matrixdist).

Speed gains required for regularization and automatic variable selection
techniques.

Multivariate case is currently being investigated.
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