000000	000	00000000	

Phase-type regression Prague 2021

Martin Bladt

Faculty of Business and Economics, University of Lausanne

November 19, 2021.

Martin Bladt

Phase-type regression

v of Business and Economics. University of Lausanne

▲□▶ ▲□▶ ▲臣▶ ★臣▶ ―臣 _ のへで

PH distributions				
•000000	000000 000	000 0000	00000000 000000	
Proliminarios				

Basic concepts

- Let $(J_t)_{t\geq 0}$ denote a Markov jump process on a state space $\{1, \ldots, p, p+1\}$, where states $1, \ldots, p$ are transient and p+1 absorbing.
- Transition probabilities

$$p_{ij}(s,t) = \mathbb{P}(J_t = j | J_s = i), \quad i, j \in \{1, \dots, p+1\},\$$

Intensity:

$$\mathbf{\Lambda}(t) = \begin{pmatrix} \mathbf{T}(t) & \mathbf{t}(t) \\ \mathbf{0} & 0 \end{pmatrix} \in \mathbb{R}^{(p+1) \times (p+1)}, \quad t \ge 0,$$

implies that

$$\boldsymbol{P}(s,t) = \prod_{s}^{t} (\boldsymbol{I} + \boldsymbol{\Lambda}(u) du) := \boldsymbol{I} + \sum_{k=1}^{\infty} \int_{s}^{t} \int_{s}^{u_{k}} \cdots \int_{s}^{u_{2}} \boldsymbol{\Lambda}(u_{1}) \cdots \boldsymbol{\Lambda}(u_{k}) du_{1} \cdots du_{k},$$

for s < t, where $\Lambda(t)$ is an intensity matrix.

If the matrices T(s) and T(t) commute for any s < t we may write

$$\boldsymbol{P}(s,t) = \begin{pmatrix} \exp\left(\int_{s}^{t} \boldsymbol{T}(u) du\right) & \boldsymbol{e} - \exp\left(\int_{s}^{t} \boldsymbol{T}(u) du\right) \boldsymbol{e} \\ \mathbf{0} & 1 \end{pmatrix}, \quad s < t.$$

Martin Bladt

PH distributions				
000000	000000 000	000 0000	00000000 000000	
Preliminaries				

Basic Concepts II

Initial distribution

$$\boldsymbol{\pi}=(\pi_1,\ldots,\pi_p).$$

■ Inhomogeneous phase-type distributed random variable:

$$Y = \inf\{t > 0 : J_t = p + 1\}.$$

Assumption 1:

$$T(t) = \lambda(t) T$$

with $\lambda(t)$ some positive function.

■ Assumption 2: the map

$$y\mapsto \int_0^y\lambda(s)ds\in(0,\infty),\quad \forall y>0,$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

converges to infinity as $y \to \infty$.

• Assumption 3: The function λ is parametric.

PH distributions				
000000	000000 000	000 0000	00000000 000000	

Sub-intensity structures

Figure: Underlying Markov structures. Names are borrowed from the corresponding PH representations, but apply to our inhomogeneous setup as well. The state 0 is added for schematic reasons, but is not part of the actual state-space of the chain.

イロト 不同 トイヨト イヨト ヨー うらつ

PH distributions				
000000	000000 000	000 0000	00000000 000000	
Th. 11				

Properties and tail behaviour

Dense (weak convergence) on all positive distributions.

Proposition

Let $Y \sim IPH(\boldsymbol{\pi}, \boldsymbol{T}, \lambda)$. Then the survival function $S_Y = 1 - F_Y(y)$, density f_Y , hazard function h_Y and cumulative hazard function H_Y of Y satisfy, respectively, as $t \to \infty$,

$$S_Y(y) = \boldsymbol{\pi} \exp\left(\int_0^y \lambda(s) ds \ \boldsymbol{T}\right) \boldsymbol{e} \sim c_1 [g^{-1}(y)]^{n-1} e^{-\chi[g^{-1}(y)]},$$

$$f_Y(y) = \lambda(y) \boldsymbol{\pi} \exp\left(\int_0^y \lambda(s) ds \ \boldsymbol{T}\right) \boldsymbol{t} \sim c_2 [g^{-1}(y)]^{n-1} e^{-\chi[g^{-1}(y)]} \lambda(y),$$

$$h_Y(y) \sim c\lambda(y),$$

$$H_Y(y) \sim kg^{-1}(y),$$

where c_1, c_2, c, k are positive constants, $-\chi$ is the largest real eigenvalue of T and n is the dimension of the Jordan block associated to χ . Here $g^{-1}(y) = \int_0^y \lambda(s)$.

Martin Bladt

PH distributions				
0000000	000000 000	000 0000	00000000 000000	

Parametrizations

	$\lambda(t)$	g(y)	Parameters Domain
Matrix-Pareto	$(t+\beta)^{-1}$	$\beta \left(\exp(y) - 1 \right)$	$\beta > 0$
Matrix-Weibull	$\beta t^{\beta-1}$	$y^{1/eta}$	$\beta > 0$
Matrix-Lognormal	$\frac{\gamma(\log(s+1))^{\gamma-1}}{s+1}$	$\exp(y^{1/\gamma}) - 1$	$\gamma > 1$
Matrix-Loglogistic	$\theta t^{\theta-1}/(t^\theta+\gamma^\theta)$	$\gamma(\exp(y) - 1)^{1/\theta}$	$\gamma, \theta > 0$
Matrix-Gompertz	$\exp(\beta t)$	$\log(\beta y+1)/\beta$	$\beta > 0$
Matrix-GEV	-	$\mu + \sigma (y^{-\xi} - 1)/\xi$	$\mu\in\mathbb{R},\sigma>0,\xi\in\mathbb{R}$

・ロト ・日・・日・・日・ うへぐ

Martin Bladt

PH distributions				
0000000	000000 000	000 0000	00000000 000000	

Example: FreMPL severity (Marginal)

Datasets freMPL1, freMPL2, freMPL3, freMPL4. Total 7008 claim severities for about 30,000 policies in 2004. 18 covariates (for later...)

Figure: AIC: 121311; 119247; 119231; **119142**. *p* = 3, 20. Estimation using matrixdist, in CRAN.

Martin Bladt

PH distributions				
000000	000000 000	000 0000	00000000 000000	

From marginal to conditional specifications

$$S_Y(y) = \pi \exp\left(\int_0^y \lambda(s) ds \ \mathbf{T}(\mathbf{X})\right) \mathbf{e}$$

Proportional Intensities (Non-life insurance)

・ロト ・日・・日・・日・・日・

Martin Bladt

PH distributions				
000000	000000 000	000 0000	00000000 000000	

From marginal to conditional specifications

$$S_Y(y) = \pi \exp\left(\int_0^y \lambda(s, \boldsymbol{X}) \boldsymbol{T}(\boldsymbol{X}) ds \right) \boldsymbol{e}$$

Extended Proportional Intensities (Mortality modeling)

▲□▶ ▲□▶ ▲臣▶ ★臣▶ ―臣 _ のへで

Martin Bladt

PH distributions				
000000	000000 000	000 0000	00000000 000000	

From marginal to conditional specifications

$$S_Y(y) = \boldsymbol{\pi}(\boldsymbol{X}) \exp\left(\int_0^y \lambda(s) ds \ \boldsymbol{T}\right) \boldsymbol{e}$$

Mixture-of-Experts (Non-life insurance)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Martin Bladt

	Proportional intensities			
	•••••• ••••	000 0000	00000000 000000	
Theres				

Proportional intensities

Since $\lambda(\cdot; \theta)$ is a parametric non-negative function depending on the parameter θ , we incorporate the predictor variables $\boldsymbol{X} = (X_1, \ldots, X_d)$ by specifying

$$\lambda(t \mid \boldsymbol{X}, \boldsymbol{\beta}) = \lambda(t; \theta) m(\boldsymbol{X}\boldsymbol{\beta}), \quad t \ge 0,$$
(1)

where $m\beta(X\gamma)$ is a positive-valued function of the score $X\beta$.

Example:

$$m(\boldsymbol{X}\boldsymbol{\beta}) = \exp(\boldsymbol{X}\boldsymbol{\beta})$$

is a natural choice.

• The conditional mean can be written on the form

$$\mu(Y|\boldsymbol{X}) = \int_0^\infty \boldsymbol{\pi} \exp\left(m(\boldsymbol{X}\boldsymbol{\beta}) \int_0^y \lambda(s;\theta) ds \, \boldsymbol{T}\right) \boldsymbol{e} \, dy. \tag{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

	Proportional intensities			
	00000			
	000	0000	000000	
Theory				

Special cases

A simple special case is obtained by the following choices, giving a Gamma GLM with canonical link: take T = -1, and $\lambda \equiv 1$ to receive

$$\mu(Y|\boldsymbol{X}) = \int_0^\infty \exp(-m(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\beta})y) \, dy = \frac{1}{m(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\beta})}.$$

Another slightly more complex special case is that of regression for Matrix-Weibull distributions, which contains the pure PH specification (when $\lambda \equiv 1$). In this setting it is not hard to see that

$$\mu(Y|\boldsymbol{X}) = \int_0^\infty \boldsymbol{\pi} \exp\left(m(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\beta})\boldsymbol{T}\boldsymbol{y}^{\theta}\right)\boldsymbol{e}\,d\boldsymbol{y} = \frac{\Gamma(1+\theta^{-1})\boldsymbol{\pi}\boldsymbol{T}^{-\theta^{-1}}\boldsymbol{e}}{m(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\beta})^{\theta^{-1}}}.$$
 (3)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

	Proportional intensities			
	00000 000	000 0000	00000000 000000	
(TD)				

Estimation

Define g as

$$g^{-1}(y|\theta) = \int_0^y \lambda(s;\theta) ds$$

so that

$$Z = g^{-1}(Y/m(\boldsymbol{X}\boldsymbol{\beta}) | \theta) \sim \mathrm{PH}(\boldsymbol{\pi}, \boldsymbol{T}) \,. \tag{4}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Define: B_k be the number of times that the underlying jump-process $\{J_t\}_{t\geq 0}$ initiates in state $k.N_{ks}$ the total number of jumps from state k to $s. N_k$ the number of times that we reach the absorbing state p+1 from state $k. Z_k$ be the total time that the underlying Markov jump process spends in state k prior to absorption.
- Complete likelihood:

$$\mathcal{L}_{c}(\boldsymbol{\pi}, \boldsymbol{T}; \boldsymbol{z}) = \prod_{k=1}^{p} \pi_{k}^{B_{k}} \prod_{k=1}^{p} \prod_{s \neq k} t_{ks}^{N_{ks}} e^{-t_{ks}Z_{k}} \prod_{k=1}^{p} t_{k}^{N_{k}} e^{-t_{k}Z_{k}}, \quad (5)$$

with explicit maximum likelihood estimators.

Martin Bladt

	Proportional intensities			
	000000 000	000 0000	00000000 000000	
Theory				

Estimation II

Step 1: (E-step) compute the statistics

$$\mathbb{E}(B_k \mid \boldsymbol{Z} = \boldsymbol{z}) = \sum_{i=1}^{N} \frac{\pi_k \boldsymbol{e_k}^{\mathsf{T}} \exp(\boldsymbol{T} z_i) \boldsymbol{t}}{\boldsymbol{\pi} \exp(\boldsymbol{T} x_i) \boldsymbol{t}}$$

$$\mathbb{E}(Z_k \mid \boldsymbol{Z} = \boldsymbol{z}) = \sum_{i=1}^{N} \frac{\int_0^{z_i} \boldsymbol{e}_k^{\mathsf{T}} \exp(\boldsymbol{T}(z_i - u)) \boldsymbol{t} \boldsymbol{\pi} \exp(\boldsymbol{T}u) \boldsymbol{e}_k du}{\boldsymbol{\pi} \exp(\boldsymbol{T}z_i) \boldsymbol{t}}$$

$$\mathbb{E}(N_{ks} \mid \boldsymbol{Z} = \boldsymbol{z}) = \sum_{i=1}^{N} t_{ks} \frac{\int_{0}^{z_{i}} \boldsymbol{e}_{s}^{\mathsf{T}} \exp(\boldsymbol{T}(z_{i}-u)) \boldsymbol{t} \boldsymbol{\pi} \exp(\boldsymbol{T}u) \boldsymbol{e}_{k} du}{\boldsymbol{\pi} \exp(\boldsymbol{T}z_{i}) \boldsymbol{t}}$$

$$\mathbb{E}(N_k \mid \boldsymbol{Z} = \boldsymbol{z}) = \sum_{i=1}^N t_k \frac{\boldsymbol{\pi} \exp(\boldsymbol{T} z_i) \boldsymbol{e} y_k}{\boldsymbol{\pi} \exp(\boldsymbol{T} z_i) \boldsymbol{t}}$$

Martin Bladt

	000	0000	000000	
	000	0000	00000	
0000000	000000	000	00000000	
	Proportional intensities			

Estimation III

Step 2: (M-step)

$$\hat{\pi}_k = \frac{\mathbb{E}(B_k \mid \boldsymbol{Z} = \boldsymbol{z})}{N}, \quad \hat{t}_{ks} = \frac{\mathbb{E}(N_{ks} \mid \boldsymbol{Z} = \boldsymbol{z})}{\mathbb{E}(Z_k \mid \boldsymbol{Z} = \boldsymbol{z})}$$

$$\hat{t}_k = rac{\mathbb{E}(N_k \mid \boldsymbol{Z} = \boldsymbol{z})}{\mathbb{E}(Z_k \mid \boldsymbol{Z} = \boldsymbol{z})}, \quad \hat{t}_{kk} = -\sum_{s \neq k} \hat{t}_{ks} - \hat{t}_k.$$

Step 3: (Inhomogeneity optimization)

$$\begin{split} (\hat{\theta}, \hat{\boldsymbol{\beta}}) &= \operatorname*{arg\,max}_{(\boldsymbol{\theta}, \boldsymbol{\beta})} \sum_{i=1}^{N} \log(f_Y(y_i; \hat{\boldsymbol{\pi}}, \hat{\boldsymbol{T}}, \boldsymbol{\theta}, \boldsymbol{\beta})) \\ &= \operatorname*{arg\,max}_{(\boldsymbol{\theta}, \boldsymbol{\beta})} \sum_{i=1}^{N} \log\left(m(\boldsymbol{x}_i \boldsymbol{\beta}) \lambda(y; \boldsymbol{\theta}) \, \boldsymbol{\pi} \exp\left(m(\boldsymbol{x}_i \boldsymbol{\beta}) \int_0^y \lambda(s; \boldsymbol{\theta}) ds \; \boldsymbol{T}\right) \boldsymbol{t}\right) \end{split}$$

5 9 Q (P

 $\exists \rightarrow$

and re-transform data.

Iterating the above three steps is an increasing EM algorithm.

Martin Bladt

 PH distributions
 Proportional intensities
 Extended proportional intensities
 PH Mixture-of-Experts
 Conclusion

 000000
 0000000
 000000000
 0
 0
 0

 0000000
 0000
 000000000
 0
 0

Theory

Inference

<u>Problem:</u> π and T are non-identifiable. Proposed solution: use partial likelihood. Let $\ell_{\boldsymbol{y}}(\boldsymbol{\beta}, \theta)$ be the log-likelihood function of the observed severities $\boldsymbol{y} = (y_1, \ldots, y_N)$ with rating factors $\overline{\boldsymbol{x}} = (\boldsymbol{x}_1, \ldots, \boldsymbol{x}_N)$. As $N \to \infty$,

$$\widehat{(\boldsymbol{\beta},\boldsymbol{\theta})} \stackrel{d}{\approx} \mathcal{N}((\boldsymbol{\beta},\boldsymbol{\theta}),\mathcal{I}^{-1}),$$

where

$$[\mathcal{I}]_{jk} = \begin{cases} \sum_{i=1}^{N} G_1(i, j | \boldsymbol{\pi}, \boldsymbol{T}, \boldsymbol{\beta}, \theta, \boldsymbol{y}, \overline{\boldsymbol{x}}) G_1(i, k | \boldsymbol{\pi}, \boldsymbol{T}, \boldsymbol{\beta}, \theta, \boldsymbol{y}, \overline{\boldsymbol{x}}) & 1 \leq j, k \leq d, \\ \sum_{i=1}^{N} G_1(i, j | \boldsymbol{\pi}, \boldsymbol{T}, \boldsymbol{\beta}, \theta, \boldsymbol{y}, \overline{\boldsymbol{x}}) G_2(i | \boldsymbol{\pi}, \boldsymbol{T}, \boldsymbol{\beta}, \theta, \boldsymbol{y}, \overline{\boldsymbol{x}}) & 1 \leq j \leq d, \ k = d+1, \\ \sum_{i=1}^{N} G_2^2(i | \boldsymbol{\pi}, \boldsymbol{T}, \boldsymbol{\beta}, \theta, \boldsymbol{y}, \overline{\boldsymbol{x}}) & j = k = d+1. \end{cases}$$

$$(6)$$

and

$$G_{1}(i, j | \boldsymbol{\pi}, \boldsymbol{T}, \boldsymbol{\beta}, \boldsymbol{\theta}, \boldsymbol{y}, \overline{\boldsymbol{x}}) = x_{ij} m'(\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}) \left(\frac{1}{m(\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta})} + \frac{\boldsymbol{\pi} \exp\left(m(\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta})h(y_{i}; \boldsymbol{\theta})\boldsymbol{T}\right)h(y_{i}; \boldsymbol{\theta})\boldsymbol{T}t\right)}{\boldsymbol{\pi} \exp\left(m(\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta})h(y_{i}; \boldsymbol{\theta})\boldsymbol{T}\right)t} \right),$$

$$G_{2}(i | \boldsymbol{\pi}, \boldsymbol{T}, \boldsymbol{\beta}, \boldsymbol{\theta}, \boldsymbol{y}, \overline{\boldsymbol{x}}) = \frac{\frac{d}{d\theta} \lambda(y_{i}; \boldsymbol{\theta})}{\lambda(y_{i}; \boldsymbol{\theta})} + \frac{\boldsymbol{\pi} \exp\left(m(\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta})h(y_{i}, \boldsymbol{\theta})\boldsymbol{T}\right)m(\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta})\frac{d}{d\theta}h(y_{i}, \boldsymbol{\theta})\boldsymbol{T}t}{\boldsymbol{\pi} \exp\left(m(\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta})h(y_{i}; \boldsymbol{\theta})\boldsymbol{T}\right)t}$$

$$\leq \square \triangleright \langle \boldsymbol{\beta} \rangle \land \langle \boldsymbol{z} \rangle \land \langle \boldsymbol{z} \rangle \land \langle \boldsymbol{z} \rangle \rangle \langle \boldsymbol{z} \rangle$$

Martin Bladt

	Proportional intensities			
	000000 •00	000 0000	000000000	
Application				

Note: 18 covariates and all their levels were pre-processed using decision trees.

Figure: Coefficients and p-values of IPH and GLM regression. For display: IPH coefficients multiplied by -1 and intercept of GLM omitted.

Martin Bladt

	Proportional intensities			
	000000 •00	000 0000	000000000	
Application				

Note: 18 covariates and all their levels were pre-processed using decision trees.

Figure: Coefficients and p-values of IPH and GLM regression. For display: IPH coefficients multiplied by -1 and intercept of GLM omitted.

Martin Bladt

	Proportional intensities			
	000000 •00	000 0000	000000000	
Application				

Note: 18 covariates and all their levels were pre-processed using decision trees.

Figure: Coefficients and p-values of IPH and GLM regression. For display: IPH coefficients multiplied by -1 and intercept of GLM omitted.

Martin Bladt

	Proportional intensities			
	000000 0 00	000 0000	00000000 000000	
Application				

Even if Information Criteria are bad for PH:

Table: Summary for GLM and PH regression models for the freMPL dataset.

	Gamma GLM	Pareto PH reg.	Weibull PH reg.
Log Likelihood	-60,368	-59,464	-59,446
Degrees of freedom	26	34	34
AIC	120,788	118,996	118,961
BIC	120,966	119,229	119,194
Num. obs.	7,008	7,008	7,008
Loss-ratio (pure)	101.03%	105.18%	101.13%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Quantiles can be shown to provide much better performance.

	Proportional intensities			
	000000 000	000 0000	00000000 000000	
4 11 11				

Example: FreMPL severity (with rating factors)

э.

freMPL data: PP-plot for regression models

Martin Bladt

		Extended proportional intensities		
	000000 000	000	00000000 000000	
Theory				

Extended proportional intensities specification

Now $\lambda(\cdot; \boldsymbol{\theta})$ is a parametric non-negative function depending on the vector $\boldsymbol{\theta}$, and we incorporate the predictor variables $\boldsymbol{X} = (X_1, \ldots, X_d)$ by specifying

$$\lambda(t \mid \boldsymbol{X}, \boldsymbol{\beta}, \boldsymbol{\gamma}) = \lambda(t; \boldsymbol{\theta}(\boldsymbol{X}\boldsymbol{\gamma})) m(\boldsymbol{X}\boldsymbol{\beta}), \quad t \ge 0,$$
(7)

イロト 不同 トイヨト イヨト ヨー うらつ

where $\boldsymbol{\theta}(\boldsymbol{X}\boldsymbol{\gamma})$ is a vector-valued function mapping the score $\boldsymbol{X}\boldsymbol{\gamma}$ to the parameter space of λ .

Example:

$$\boldsymbol{\theta}(\boldsymbol{X}\boldsymbol{\gamma}) = \exp(\gamma_0 + \boldsymbol{X}\boldsymbol{\gamma})$$

is a natural choice. Here, an intercept makes sense.

• λ according to a Gompertz tail will be used throughout (mortality!)

	Extended proportional intensities	PH Mixture-of-Experts	
000000	0000	000000000000000000000000000000000000000	

Estimation strategy

• The E and M steps remain the same, and the inhomogeneity optimization changes to

$$(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\gamma}}) = \operatorname*{arg\,max}_{(\boldsymbol{\beta}, \boldsymbol{\gamma})} \left\{ \sum_{i=1}^{N} \log \left(m(\boldsymbol{x}_{i}\boldsymbol{\beta})\lambda(y; \boldsymbol{\theta}(\boldsymbol{x}_{i}\boldsymbol{\gamma})) \, \hat{\boldsymbol{\pi}} \exp \left(m(\boldsymbol{x}_{i}\boldsymbol{\beta}) \int_{0}^{y} \lambda(s; \boldsymbol{\theta}(\boldsymbol{x}_{i}\boldsymbol{\gamma})) ds \, \, \hat{\boldsymbol{T}} \right) \hat{\boldsymbol{t}} \right\}$$

イロト 不同 トイヨト イヨト ヨー うらつ

- <u>However</u>, mortality modeling requires equal weighting for each age.
- Hence, we use the EM algorithm as a good initial guess, and we design another fitting procedure.

	Extended proportional intensities		
000000 000	000	00000000 000000	

Estimation strategy II

Define loss function:

$$\ell(\boldsymbol{\pi}, \boldsymbol{T}, f | \boldsymbol{\mu}) = \sum_{x=0}^{N} L(\mu_g(x), \mu_x),$$

where μ_x is the observed mortality at age x and μ_g is the hazard rate of the EPI model.

• We found that $L(\mu, \nu) = (\log(\mu) - \log(\nu))^2$ is a good choice. We get

$$\ell(\boldsymbol{\pi}, \boldsymbol{T}, f | \boldsymbol{\mu}) = \sum_{x=0}^{N} (\log(\mathcal{C}(x | \boldsymbol{\pi}, \boldsymbol{T}, f)) + \log(\mu_f(x)) - \log(\mu_x))^2,$$

with the correction factor

$$C(x|\boldsymbol{\pi}, \boldsymbol{T}, f) = \frac{\boldsymbol{\pi} \exp\left(\boldsymbol{T} \int_{0}^{x} \mu_{f}(s) ds\right) \boldsymbol{t}}{\boldsymbol{\pi} \exp\left(\boldsymbol{T} \int_{0}^{x} \mu_{f}(s) ds\right) \boldsymbol{e}}$$

■ EPI model will have a lower likelihood than the one arising from the EM algorithm!

Martin Bladt

	Extended proportional intensities		
000000 000	000 ●000	00000000 000000	

Example: Danish female mortality

Figure: Fitted IPH distributions to Danish female mortality data.

3) J

The probability to reach last state p = 10 before death is 0.299.

Martin Bladt Phase-type regression

	Extended proportional intensities		
000000 000	000 0 0 00	00000000 000000	

Example: Japan vs USA female mortality

Female mortality 2000-2010

Figure: PI model applied to country as a covariate.

Regression parameters: $\boldsymbol{\beta} = (0.91), \quad \boldsymbol{\theta} = (2.28, -0.07).$ (USA=1,Japan=0)

Martin Bladt

		Extended proportional intensities		
	000000 000	000 00●0	00000000 000000	
Application				

Time as covariate

Classical model Lee-Carter (non-parametric):

$$\log(\mu_{x,t}) = a_x + b_x k_t + \epsilon_{x,t},$$

where $\epsilon_{x,t}$ are Gaussian random variables. The a_x term is estimated as the average log-mortality over time at each age x, and then b_x and k_t are computed from a singular value decomposition of $\log(\mu_{x,t}) - a_x$.

EPI model is **parametric**. As x grows,

$$\log(\mu_{x,t}) \approx a + b_{x,t} + k_t,$$

where $a = \log(c)$ is a constant which depends on the parameters π and T, $b_{x,t} = \log(\lambda(x; \exp(\theta_0 + \theta_1 t^*))) = \exp(\theta_0 + \theta_1 t^*) \log(x)$, and $k_t = \beta_1 t^*$.

• For smaller x:

$$\log(\mu_{x,t}) = b_{x,t} + \log\left(\boldsymbol{\pi} \exp\left(\int_0^x \exp(b_{s,t} + k_t) ds \ \boldsymbol{T}\right) \boldsymbol{t}\right) \\ - \log\left(\boldsymbol{\pi} \exp\left(\int_0^x \exp(b_{s,t} + k_t) ds \ \boldsymbol{T}\right) \boldsymbol{e}\right).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

	Extended proportional intensities		
000000 000	000 000	00000000 000000	

Danish females

Figure: PI model using time as a covariate, plotted for 1960, 1980 and 2000.

Regression parameters: $\boldsymbol{\beta} = (-22.54)$ $\boldsymbol{\theta} = (1.92, 2.94)$. LC overfits!

Martin Bladt

			PH Mixture-of-Experts	
	000000 000	000 0000	•••••• ••••••	
Theory				

PH Mixture-of-Experts

Define the mapping

$$\boldsymbol{\pi}: D \subset \mathbb{R}^d \to \Delta^{p-1}$$
,

where $\Delta^{p-1} = \{(\pi_1, \cdots, \pi_p) \in \mathbb{R}^p \mid \sum_k \pi_k = 1 \text{ and } \pi_k \ge 0 \text{ for all } k\}$ is the standard (p-1)-simplex.

For any given $\boldsymbol{x} \in \mathbb{R}^d$, we endow the process with the initial probabilities

$$\mathbb{P}(J_0 = k) = \pi_k(\boldsymbol{x}) := (\boldsymbol{\pi}(\boldsymbol{x}))_k, \quad k = 1, \dots, p,$$

and $\mathbb{P}(J_0 = p + 1) = 0$. Note that

$$Y = \inf\{t > 0 : J_t = p + 1\},\$$

satisfies that

$$Y \sim \text{IPH}(\boldsymbol{\pi}(\boldsymbol{x}), \boldsymbol{T}, \lambda) \quad \Leftrightarrow \quad J_0 \sim \boldsymbol{\pi}(\boldsymbol{x}) \,.$$

Definition

Let X be a d-dimensional vector of covariates. Then we say that

$$Y | \boldsymbol{X} \sim \operatorname{IPH}(\boldsymbol{\pi}(\boldsymbol{X}), \boldsymbol{T}, \lambda)$$

is a phase-type mixture-of-experts (PH-MoE) model.

Martin Bladt

			PH Mixture-of-Experts	
	000000 000	000 0000	00000000 000000	
Theory				

Properties

Mixture of IPH distributions:

$$\mathbb{P}(Y > y | \boldsymbol{X} = \boldsymbol{x}) = \sum_{k=1}^{p} \mathbb{P}(Y > y | J_0 = k) \pi_k(\boldsymbol{x}).$$

Marginals are always IPH:

Proposition

Let X be a random vector in a convex $D \subset \mathbb{R}^d$. Then the PH-MoE model has marginal distribution given by

 $IPH(\boldsymbol{\pi}(\boldsymbol{x}^*), \boldsymbol{T}, \lambda),$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

for some $\mathbf{x}^* \in D$. In fact, $\mathbf{\pi}(\mathbf{x}^*) = \mathbb{E}(\mathbf{\pi}(\mathbf{X}))$.

■ Hence, we use it in its conditional form.

		PH Mixture-of-Experts	
0000000 000	000 0000	00000000 000000	

Softmax parametrization

Definition

We say that the PH-MoE model with initial probabilities $\pi(X; \alpha) = (\pi_k(X; \alpha))_{k=1,...,p}$ given by

$$\pi_k(\boldsymbol{X};\boldsymbol{\alpha}) = \frac{\exp(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\alpha}_k)}{\sum_{j=1}^p \exp(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\alpha}_j)}, \quad k = 1, \dots, p, \qquad (8)$$

イロト 不同 トイヨト イヨト ヨー うらう

satisfies the softmax parametrization. Here, $\boldsymbol{\alpha}_k \in \overline{\mathbb{R}}^d$, $k = 1, \ldots, p$, and $\boldsymbol{\alpha} = (\boldsymbol{\alpha}_1^{\mathsf{T}}, \ldots, \boldsymbol{\alpha}_p^{\mathsf{T}})^{\mathsf{T}} \in \overline{\mathbb{R}}^{(p \times d)}$.

For any $k, j \in \{1, \ldots, p\}$,

$$\log\left(\frac{\pi_k(\boldsymbol{X};\boldsymbol{\alpha})}{\pi_j(\boldsymbol{X};\boldsymbol{\alpha})}\right) = \boldsymbol{X}^{\mathsf{T}}\left(\boldsymbol{\alpha}_k - \boldsymbol{\alpha}_j\right) = \sum_{i=1}^d X_i(\alpha_{ki} - \alpha_{ji}).$$

Martin Bladt

		PH Mixture-of-Experts	
000000 000	000 0000	0000000 000000	

Denseness properties

Definition

Let W_1, \ldots, W_n be positive and continuous random variables having otherwise arbitrary distributions, and let $\eta \in \{1, \ldots, n\}$ be a multinomial random variable, such that

 $W_i \perp \!\!\!\perp W_j, \ \forall i \neq j, \text{ and } W_i \perp \!\!\!\perp_{\boldsymbol{X}} \eta, \ \forall i.$

and such that X contains at least an intercept. Then we say that $W_{\eta} | X$ follows a multinomial mixture distribution.

Proposition

Let $W|\mathbf{X}$ follow a multinomial mixture distribution. Then there exist PH-MoE models $(Y_m|\mathbf{X})_{m>0}$ such that

$$Y_m | \boldsymbol{X} \stackrel{d}{\to} W | \boldsymbol{X}, \quad m \to \infty.$$

イロト 不同 トイヨト イヨト ヨー うらう

Moreover, the softmax parametrization may be chosen.

Martin Bladt

			PH Mixture-of-Experts	
	000000 000	000 0000	00000000 000000	

Denseness properties II

Definition

Let \mathcal{A} be the set of possible values of the covariates X. A severity regression model is the set of laws of

$$Y | \boldsymbol{X} = \boldsymbol{x}, \quad \boldsymbol{x} \in \mathcal{A}.$$

Condition

A regression model is said to satisfy the tightness and Lipschitz conditions on \mathcal{A} if $\{\mathbb{P}(Y \in \cdot | \boldsymbol{X} = \boldsymbol{x})\}_{\boldsymbol{x} \in \mathcal{A}}$ is a tight family of distributions, and for each $y \geq 0$, the function $\boldsymbol{x} \mapsto \mathbb{P}(Y \leq y | \boldsymbol{X} = \boldsymbol{x})$ is Lipschitz continuous in \mathcal{A} .

Proposition

Let a regression model satisfy the tightness and Lipschitz conditions on $\mathcal{A} = \{1\} \times [a, b]^{d-1}$, $a, b \in \mathbb{R}$. Then there exists a sequence of PH-MoE regression models converging uniformly weakly to it.

イロト 不同 トイヨト イヨト ヨー うらう

Proof: Similar to Fung et al. (2019).

			PH Mixture-of-Experts	
	000000 000	000 0000	00000000 000000	
Theory				

Estimation

Completely observed likelihood:

$$\begin{aligned} \mathcal{L}_{c}(\boldsymbol{\pi},\boldsymbol{T}|\boldsymbol{z},\boldsymbol{\bar{x}}) \\ &= \prod_{i=1}^{N} \mathcal{L}_{c}(\boldsymbol{\pi},\boldsymbol{T}|\boldsymbol{z}_{i},\boldsymbol{X}=\boldsymbol{x}_{i}) \\ &= \prod_{i=1}^{N} \prod_{k=1}^{p} \pi_{k}(\boldsymbol{x}_{i})^{B_{k}(\boldsymbol{x}_{i})} \prod_{k=1}^{p} \prod_{l \neq k} t_{kl}^{N_{kl}(\boldsymbol{x}_{i})} \exp(-t_{kl}V_{k}(\boldsymbol{x}_{i})) \prod_{k=1}^{p} t_{k}^{N_{k}(\boldsymbol{x}_{i})} \exp(-t_{k}V_{k}(\boldsymbol{x}_{i})) \\ &= \cdots \\ &= \left(\prod_{i=1}^{N} \prod_{k=1}^{p} \pi_{k}(\boldsymbol{x}_{i})^{B_{k}(\boldsymbol{x}_{i})}\right) \prod_{k=1}^{p} \prod_{l \neq k} t_{kl}^{N_{kl}} \exp(-t_{kl}V_{k}) \prod_{k=1}^{p} t_{k}^{N_{k}} \exp(-t_{k}V_{k}), \end{aligned}$$

with

$$N_{kl} := \sum_{i=1}^{N} N_{kl}(\boldsymbol{x}_i) , \quad V_k := \sum_{i=1}^{N} V_k(\boldsymbol{x}_i) , \quad N_k := \sum_{i=1}^{N} N_k(\boldsymbol{x}_i) .$$

Martin Bladt

			PH Mixture-of-Experts	
	000000 000	000 0000	000000000 000000	
Theory				

Estimation II

- The E- and M-steps are very similar (although not identical) to the PI case.
- One distinction is the optimization of the π function:

$$\hat{\boldsymbol{\pi}}(\cdot) = \operatorname*{arg\,max}_{\boldsymbol{\pi}(\cdot) \in \Delta^{p-1}} \left(\prod_{i=1}^{N} \prod_{k=1}^{p} \pi_{k}(\boldsymbol{x}_{i})^{\mathbb{E}(B_{k}(\boldsymbol{x}_{i})|Z=z_{i},\boldsymbol{X}=\boldsymbol{x}_{i})} \right),$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

where as before Δ^{p-1} is the standard (p-1)-simplex.

- The latter step corresponds to a weighted multinomial regression.
- Then finally optimize the inhomogeneity function as before.

	0000	000000	
		000000000	
		PH Mixture-of-Experts	

Asymptotic normality

Theorem

Let λ , $\boldsymbol{\eta} := (\boldsymbol{\alpha}, \boldsymbol{\theta}, T)$ be such that the log-density

$$y \mapsto \log \left[\boldsymbol{\pi}(\boldsymbol{\alpha}) \exp \left(\int_0^y \lambda(s; \boldsymbol{\theta}) ds \boldsymbol{T} \right) \boldsymbol{t} \, \lambda(x; \boldsymbol{\theta}) \right], \quad y > 0,$$

satisfies standard assumptions from Lehmann and Casella (2006). As $n \to \infty$,

- **1** There exist consistent solutions $\hat{\boldsymbol{\eta}}_n$ to the likelihood equations.
- **2** The following convergence holds:

$$\sqrt{n} \left(\hat{\boldsymbol{\eta}}_n - \boldsymbol{\eta} \right) \stackrel{d}{\to} \mathcal{N}(\boldsymbol{0}, \boldsymbol{\mathcal{I}}^{-1}),$$

where $\boldsymbol{\mathcal{I}}$ is the information matrix.

3 The *j*-th parameter is asymptotically efficient:

$$\sqrt{n} (\hat{\eta}_{jn} - \eta_j) \stackrel{d}{\to} \mathcal{N}(0, [\mathcal{I}^{-1}]_{jj}).$$

イロト 不同 トイヨト イヨト ヨー うらう

In practice, we use partial likelihood.

Martin Bladt

000	0000	000000	
		00000000	
		PH Mixture-of-Experts	

Transforms

- Different tail behaviour can arise for subpopulations.
- We may use global models.
- We may use the following:

Definition

We say that a PH-MoE model is semi-composite if its intensity function is of the form

$$\lambda(t) = \begin{cases} \lambda_1(t), & t \le y_0, \\ \lambda_2(t), & t > y_0, \end{cases}$$

for any two intensities λ_1, λ_2 .

Proposition

For a semi-composite PH-MoE we have that

$$\overline{F}_{Y|\boldsymbol{X}}(y|\boldsymbol{x}) = \begin{cases} \boldsymbol{\pi}(\boldsymbol{x}) \exp(\boldsymbol{T}g_1^{-1}(y))\boldsymbol{e}, & y \leq y_0, \\ \boldsymbol{\pi}(\boldsymbol{x}) \exp((g_2^{-1}(y) + g_1^{-1}(y_0) - g_2^{-1}(y_0))\boldsymbol{T})\boldsymbol{e}, & y > y_0. \end{cases}$$

Martin Bladt

			PH Mixture-of-Experts	
	000000 000	000 0000	00000000 000000	
Application				

Simulation

We simulate 2000 observations divided into 4 groups of size 500, each having distributions as follows:

 $\begin{array}{ll} \mbox{Group A: } Y_i \sim \Gamma(\mbox{shape} = 1, \mbox{scale} = 3), & \mbox{Group B: } Y_i \sim \Gamma(\mbox{shape} = 3, \mbox{scale} = 9), \\ \mbox{Group C: } Y_i \sim \Gamma(\mbox{shape} = 1, \mbox{scale} = 9), & \mbox{Group D: } Y_i \sim \Gamma(\mbox{shape} = 3, \mbox{scale} = 3). \end{array}$

Estimated initial probabilities of a p = 3 homogeneous PH-MoE:

 $\begin{aligned} & \pi(\text{Group A}) = (0.976, \ 0.000, \ 0.013, \ 0.000, \ 0.011), \\ & \pi(\text{Group B}) = (0.000, \ 0.007, \ 0.000, \ 0.993, \ 0.000), \\ & \pi(\text{Group C}) = (0.328, \ 0.094, \ 0.324, \ 0.173, \ 0.080), \\ & \pi(\text{Group D}) = (0.000, \ 0.000, \ 0.976, \ 0.000, \ 0.024). \end{aligned}$

イロト 不同 トイヨト イヨト ヨー うらう

		PH Mixture-of-Experts	
000000 000	000 0000	00000000 0 00000	

Simulation II

Densities by group, PH-MoE fit

Martin Bladt

		PH Mixture-of-Experts	
000000 000	000 0000	00000000 0 00000	

Simulation II

Densities by group, GLM fit

Martin Bladt

			PH Mixture-of-Experts	
	000000 000	000 0000	00000000 000000	
Application				

FreMTPL severities

- French Motor Third Party Liability datasets freMTPLfreq and freMTPLsev. Total of 413, 169 motor insurance policies, with 15, 390 claims.
- For numerical reasons, we also divide the claim size by 10^4 .
- p = 5 again. We select the following covariates:
 - Power: The power of the car, an ordered categorical variable with values: d, e, f, g, h, i, j, k, l, m, n, o.
 - Region: The policy region in France, based on the 1970-2015 classification. Possible values associated with the excesses are: Aquitaine, Basse-Normandie, Bretagne, Centre, Haute-Normandie, Ile-de-France, Limousin, Nord-Pas-de-Calais Pays-de-la-Loire, Poitou-Charentes.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

• We consider excesses above a threshold: PH-MoE routine can be slow for large p (say, above 10), n (in the tens of thousands) and d (more than 20 covariates).

		PH Mixture-of-Experts	
000000 000	000 0000	00000000 000000	

FreMTPL severities II

Figure: French MTPL full data.

		PH Mixture-of-Experts	
000000 000	000 0000	00000000 000000	

FreMTPL severities II

Hill estimator for excesses

Figure: French MTPL full data.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ ―臣 _ のへで

		PH Mixture-of-Experts	
000000 000	000 0000	00000000 000000	

FreMTPL severities III

	Pareto PH-MoE	Semi-composite PH-MoE	Log-normal
Log Likelihood	753.74	752.48	607.22
Degrees of freedom	110	110	22
AIC	-1,287	-1,284	-1,170
BIC	-634	-631	-1,039
Num. obs.	2,804	2,804	2,804

Table: Summary for PH-MoE and log-normal regression models for the fre MTPL dataset.

Martin Bladt

		PH Mixture-of-Experts	
000000 000	000 0000	00000000 000000	

FreMTPL severities IV

Figure: PP-plots for the fitted regression models (left panel), and fitted intensity functions for the PH-MoE models (right panel).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Economics, University of Lausar

			Conclusion
000000 000	000 0000	00000000 000000	•

Conclusion and outlook

- If your data has an odd shape or tail, phase-type regression likely helps.
- Easy to interpret.
- Most software either already or soon-to-be in CRAN (package matrixdist).

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Speed gains required for regularization and automatic variable selection techniques.
- Multivariate case is currently being investigated.