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Motivation

Advanced Claims Reserving Methods - Motivation

Complex reserving problem in non-life insurance
Claims reserve is the biggest balance sheet item for non-life
insurance company
Utilization of the micro data within insurance
Regulatory framework

Stochastic modeling
Utilization of available data within the company
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Aim of the Work

Advanced Claims Reserving Methods - Objective

Chain ladder - distribution free approach  does not
provide distributional properties

Chain ladder Bootstrap - mimics unknown distribution
Watch out! There is also second stage of the Bootstrap -
simulation of the process error. Distribution must be defined
anyway

Stochastic models based on aggregated data able to cope
with dependent variables

Generalized Estimation Equation
Generalized Linear Mixed Models

Development of the micro-model
Utilization of all data about the individual claims
Increased precision of prediction
Machine learning methods used

Neural networks
Hurdle models
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Generalized Linear Mixed Model

Linear Mixed Models

Let’s assume thatYit follows Linear Mixed model

Yit = Xit
Tβ + uit

The breakup of residuals:

uit = bi + εit

In a model with random effects, simple correlation structure is
introduced:

Yit = Xit
Tβ + bi + εit ,

bi ∼ iid
(
0, σ2

b > 0
)
,

εit ∼ iid
(
0, σ2

ε > 0
)
,

E (εitbj) = 0, ∀ i , j and t, E (bibj) = 0, i 6= j
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Generalized Linear Mixed Model

Linear Mixed Models

Introducing the correlation:

Cov (uit , uis) = Cov (εit + bi , εis + bi )

= Var (bi ) + Cov (εit , εis) =

=

{
σ2
b t 6= s, ∀i ,
σ2
b + σ2

ε t = s, ∀i .

Corr (uit , ujs) =


σ2
b

σ2
b+σ

2
ε

t 6= s, i = j ,

1 t = s, i = j ,
0 otherwise

LMM (in general):
Yit = Xit

Tβ + Zit
Tbi + εit
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Generalized Linear Mixed Model

Bayes Approach in Linear Mixed Models

Prediction of random variable translates into the problem of
predicting the conditional mean of bi , given the vector of
response Yi . Using properties of joint
multivariate normal distribution of bi and εi , it can be written as
E (bi |Yi ) = GZT

i Σ
−1
i

(
Yi − Xi β̂

)
, where Cov (Yi ) = ZiGZT

i +Ri

Ŷi = Xi β̂ + Zi b̂i , Ŷi =
(
R̂ iΣ̂

−1
i

)
Xi

Ŷi =
(
R̂ iΣ̂

−1
i

)
Xi β̂ +

(
Ini − R̂ iΣ̂

−1
i

)
Yi ,

where Ri = Cov(εi ) = σ2
ε Ini , G = Cov(bi ) and Σi = Cov(Yi )

If the within-subject variability Ri is relatively large compared
to the between-subject variability Σi , more weight is given to
Xi β̂ than to the i-th observed response
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Generalized Linear Mixed Model

Generalization of Linear Mixed Models

Given bi , components of Yi are conditionally independent, with
density belonging to the exponential family of distributions:

f (yit |bi ) = exp

{
Yitθit − b(θit)

ϕ
+ c(Yit , ϕ)

}
Then the conditional mean of Yit given bi is

µit ≡ E (Yit |bi ) = b′(θit)
and the conditional variance of Yit given bi has the following
form:

Var(Yit |bi ) = ϕb′′(θit) ≡ ϕV (µit)
Furthermore, it is assumed that µit is related to the linear
predictor

ηit = Xit
Tβ + ZT

it bi

through the link function g(µit) = ηit
Conditional Yit given bi satisfies the GLM and the inclusion of
bi in all ηit brings in correlation between Yi1, . . . ,Yini
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Generalized Estimation Equations

Basics of Generalized Estimation Equations

The main idea behind GEE is to generalize and extend the
usual likelihood equations from GLM by including the
covariance matrix of the vector Y
The biggest advantage of this model:

No need to specify the whole distribution of the response
On the other hand, the following have to be defined:

The mean structure
The mean-variance relationship
Specification of the covariance structure

The first two conditions are similar to the GLM
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Generalized Estimation Equations

Definition of Generalized Estimation Equations

Unbalanced design with independence between individuals
Yi , i = 1, 2, . . . , N is assumed like in GLMM.
Denote expected value of response

µit ≡ E (Yit),

which depends on covariates, Xit as follows

g(µit) = ηit = XT
it β

It is also assumed that the variance of each Yit depends on the
mean according to

Var(Yit) = ϕV (µit),

where V (·) is a known variance function and ϕ > 0 is a
scale or dispersion parameter, that can be known or may
need to be estimated
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Generalized Estimation Equations

Impact of Correlation Matrix

Furthermore, correlation between components of Yi is
represented by a working correlation matrix

Ci ≡ Ci (α),

where α is s × 1 vector of unknown parameters
The name “working” comes from the fact that the structure
of Ci does not need to be correctly specified and
asymptotic properties of estimate still hold
The corresponding working covariance matrix for i-th subject
can be constructed as the product of standard deviations and
working correlation matrix

Vi = ϕA1/2
i Ci (α)A1/2

i ,

where Ai is diagonal matrix with V (µit) on the diagonal
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Practical Application

Claims Reserving using Generalized Linear Mixed Models

Due to interpretation and useful properties log link function
was chosen

Three various distribution functions:
Gamma
Poisson
Negative binomial

Linear predictor:

log [E (Yit |bi )] = log(µit) = ηit = β0 + bi + βt ,

β0 is intercept
bi is random effect (Gaussian distribution with zero mean)
βt captures the impact of change for particular development
year
bi is not estimated but predicted



Michal Gerthofer - Aktuársky seminár 18.5.2018 - Advanced Claims Reserving Methods
Stochastic Models Based on Aggregated Data

Practical Application

Claims Reserving using Generalized Estimation Equations

Log link used as well as in GLMM

Variance function:

V (µit) =


1,
µit ,
µ2
it

Working correlation matrix: independent, AR(1) and
exchangeable

Low number of parameters

Linear predictor:

log [E (Yit)] = log(µit) = ηit = γ + αi + βt ,

α1 = β1 = 0 and αi represents effect of accident year i , βt
effect of development year t
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Practical Application

Residual Diagnostic of Gamma Model

Based on residual diagnostic Gamma model was chosen
Predictions of the models was further compared with new
diagonal see Table below
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Practical Application

Residual Diagnostic for Generalized Estimation Equations

Choice of working correlation structure
If the mean structure is correct, the following should hold for
Pearson residuals

ri ,t ≈ 0
Var(ri ,t) ≈ ϕ

ri ,tri ,k ≈ ϕ {Ci}t,k , i = 1, 2, . . . ,N, t 6= k ∈ {1, 2, . . . , ni}

Not possible to clearly identify matrix correlation structure
based on Figures below
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Practical Application

Residual Diagnostic for Generalized Estimation Equations

Based on residual diagnostic model with variance function
µi ,t and independent correlation structure is chosen
Choice of variance function is approved by QIC
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Practical Application

Comparison of All the Models

Predictions of all the models were further compared with
the new diagonal see Table below

Model RBNS + IBNR (ths.) Diff. diag. (ths.) MSEP (bil.)
Mack ch. l. (paid triangle) 91 485 -44 245 1 466
GLMM Gamma 84 926 -37 721 866
GLMM Poison 91 485 -44 245 1 466
GLMM Negative binomial 88 706 -41 875 1 297
GEE 1 - IND 97 266 -49 039 1 847
GEE µi ,t - IND 91 485 -44 245 1 466
GEE µi ,t - EX 91 762 -44 279 1 466
GEE µi ,t - AR 91 934 -44 391 1 467
GEE µ2

i ,t - IND 80 919 -35 967 956
GEE µ2

i ,t - EX 80 919 -35 967 956
GEE µ2

i ,t - AR 80 625 -35 793 949
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Practical Application

Conclusions and Discussion

Chain ladder is not always the best approach
Necessary to check assumptions via residual diagnostic,
back-testing

Be careful by using incurred triangles - internal processes
may change by the time
Most of the mentioned stochastic methods are not able to
deal with zeros in incremental run-off triangle

Might be changed with small values but needs further
investigation and testing of sensitivity

Particular GEE or GLMM models lead to classical GLM or
have the same predictions as Chain ladder
Powerful generalization of well known GLM models for
dependent variables
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Structure of the Model

Proposed Approach

Frequency model

Predicted number of claims in a given accident year i and
reporting delay t (in years), Ni,t

Consequently, this number will be split into Ni,t,c , where
Ni,t =

∑C
c=1 Ni,t,c and C is maximal assumed length of a

claim development in years (time from reporting to closing)
Ni,t,c represents number of claims in accident year i ,
development year t that are settled after c years after
reporting

Severity model

j-th expected yearly payment EYo,t,c,j = µt,c,j of claim o
will be modeled with respect to reporting delay t and length of
claim settlement c , where j = 1, 2, . . . , c
Main objective is the modeling of development patterns
µt,c = (µt,c,1, µt,c,2, . . . , µt,c,c)T
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Structure of the Model

Proposed Approach

Overall reserve R

ER =
N∑
i=1

N∑
t=1

C∑
c=1

ENi ,t,c

c∑
j=1

EYo,t,c,j

This equation holds if Ni,t,c is independent with Yo,t,c,j

Estimation of overall reserve

R̂ =
N∑
i=1

N∑
t=1

C∑
c=1

N̂i ,t,c

c∑
j=1

µ̂t,c,j
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Frequency Model

Dataset

Run-off triangle for incremental number of IBNR claim amounts

Accident Development year j
year i 1 2 3 4 5 6 7 8 9 10 11 12
2005 2612 617 24 12 0 0 0 0 0 0 0 0
2006 2405 622 30 8 1 0 0 0 0 0 0
2007 2416 587 41 5 6 0 0 0 0 0
2008 2619 563 42 10 4 1 0 0 0
2009 2081 429 39 8 3 1 0 0
2010 1980 415 61 16 0 0 0

2011 1745 354 45 13 1 0
2012 1635 322 27 4 1
2013 1752 284 17 9
2014 1705 253 13
2015 1608 219
2016 1667
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Frequency Model

Maximum Likelihood Estimate

Assumptions

Nk =
∑N

i=1 χ(Ti ∈ δk), N(1)
k ∼ Bi(Nk , pk).

where Nk denotes the number of claims that occurred within the
time interval δk and pk is corresponding probability to be reported
until the current time τ .

It is assumed that within this short time interval δk , the
intensity of the claims process is constant
In our application δk equals to k-th accident week
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Frequency Model

Maximum Likelihood Estimate

N
(1)
k denotes number of claims reported until the current time

τ

Likelihood function

l(Nk) = Nk !

(Nk−N
(1)
k )!N

(1)
k !

p
N

(1)
k

k (1− pk)Nk−N
(1)
k .

Different approach - N(1)
k known, Nk unknown.

Must estimate pk , ∀k (distribution of reporting delay)
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Micro-model

Frequency Model

Distribution of Reporting Delay

Nonparametric estimator
Kaplan Maier for truncated data

Semi-parametric estimator
Cox regression for truncated data

Parametric estimator for truncated data - MLE
Weibull
Pareto
Log-normal
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Kaplan Maier for Right Truncated Data

F̂ ∗D(d) =
∏

j :d(j)>d

(
1− r(j)

H(j)

)
, r(j) ≡

∑n
′

i ′=1 χ(di ′ = d(j)), H(j) ≡
∑n

′

i ′=1 χ(di ′ ≤ d(j) ≤ ui ′ )

where (ui ′ , di ′ ) are observations of (Ui ′ ,Di ′ ) and i
′

= 1, 2, . . . , n
′
,

where n
′
is the number of observations. Then,

d(1) < d(2) < . . . < d(J) are ordered distinct values of
d1, d2, . . . , dn′ . F

∗
D(d) = FD(d)

FD(d(J))
is just conditional distribution!!!
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Frequency Model

Cox Regression for Truncated Data

Assumptions of proportionality holds
Transformation of variable needed
All necessary theory can be found in [4]
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Frequency Model

Parametric Approach - MLE

Estimation

θ̂D = arg max
θD

log
∏
i ′

fD(di ′ ,θD)

FD(ui ′ ,θD)
,
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Distribution Weibull Pareto Log-normal

Log-Likelihood -88523 -87896 -87007

Based on the log-likelihood
comparison in the Table above
log-normal distribution
is preferred
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Comparison of Results

Prediction of IBNR number of claims and comparison with
reality

Real Mack Pred. MLE Pred. Moment Pred.

564 Annual 538 K-M classic 447 K-M classic 499
Weekly 561 K-M truncated 542 K-M truncated 602

Cox prop. haz. 272 Cox prop. haz. 339
Weibull 490 Weibull 525
Pareto 464 Pareto 533
Log-normal 531 Log-normal 598

Also moment method was used in addition to maximum
likelihood
Cox regression and classical K-M are not very precise
It is not possible to assess prediction of reserve based on
one realization therefore simulation analysis must be
performed
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Frequency Model

Simulation Analysis
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Mack Mack MLE MLE MLE Moment Moment Moment
annual weekly K-M Pareto L-nor. K-M Pareto L-nor.

Bias 25 1 21 87 -8 -40 18 -75
MSPE 1422 2712 4526 8084 699 6060 953 6199
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Split of Number of Claims with Respect to Claim Settlement

Outline

1 Introduction
Motivation
Aim of the Work

2 Stochastic Models Based on Aggregated Data
Generalized Linear Mixed Model
Generalized Estimation Equations
Practical Application

3 Micro-model
Structure of the Model
Frequency Model
Split of Number of Claims with Respect to Claim Settlement
Severity Model
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Split of Number of Claims with Respect to Claim Settlement

Survival Analysis for Censored Data

K-M estimation of survival function
ŜC (t) = 1− F̂ ∗C (t)

∑
j :cj>t

nj−dj
nj

,

where ki is either time from reporting to closing or in case claim
hasn’t closed yet, censoring time. Further, δi is indicator of closed
claim and n is the number of observation,
dj =

∑n
i=1 χ(ki = cj , δi = 1) represents number of claims at time

cj a nj =
∑n

i=1 χ(ki ≤ cj) is number of claims in risk at time cj
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Split of Number of Claims with Respect to Claim Settlement

Kaplan Maier for Censored Data

Cox regression not possible to use due to violation of
assumptions
Comparison of Kaplan Maier for censored data and classical
Kaplan Maier
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Split of Number of Claims with Respect to Claim Settlement

Conditional Expected Value

For claims which are still open the closing time must be
predicted. Therefore, conditional expected value E (T | T > t)
must be predicted in our application.
Using survival function conditional expected value can be
expressed as follows

E (T | T > t) = t +

∫ ∞
t

S(u)

S(t)
du

Estimation of conditional expected value can be expressed
using estimated survival function as

̂E (T | T > t) = t +

∫ ∞
t

Ŝ(u)

Ŝ(t)
du
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Severity Model

Outline

1 Introduction
Motivation
Aim of the Work

2 Stochastic Models Based on Aggregated Data
Generalized Linear Mixed Model
Generalized Estimation Equations
Practical Application

3 Micro-model
Structure of the Model
Frequency Model
Split of Number of Claims with Respect to Claim Settlement
Severity Model
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Structure of Neural Networks

Hidden layers
One
Two

Number of neurons within layers
Activation function F (

∑
i wixi + b)

Sigmoid F (z) = 1
1+e−z

Hyperbolic tangent F (z) = tanh(z) = e2z−1
e2z+1

Linear F (z) = z
ReLu (rectified linear unit) F (z) = max(0, z)
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Severity Model

Optimization Algorithm

Batch methods which use the full training set to compute
the next update to parameters tend to converge very well

Very few hyper-parameters to tune
In practice computing the cost and gradient for the entire
training set can be very slow and sometimes intractable on a
single machine
Doesn’t give an easy way to incorporate new data in an
‘online’ setting

θ = θ − γ∇θE [L (θ)]

where θ is unknown parameter, γ learning rate and L is loss
(cost) function.
Stochastic Gradient Descent (SGD) addresses all these
issues by following the negative gradient of the objective after
seeing only a single or a few training examples

θ = θ − γ∇θL (θ; xi , yi )
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Severity Model

Weights

θ in SGD denotes all weights wjk and biases bk for all k and j
within neural network
Upper index w s

jk in figure below denotes hidden layer but it is
not necessary
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Severity Model

Back Propagation - Generalized Delta Rule

L=
∑P

p=1 L
p, Lp = 1

2
∑No

i=1(opi − ypi )2, ypk = F (spk ) = F

(∑n
j=1 wjk y

p
j + bk

)
where opi is i-th element of p-th observation

Utilizing differentiability of the activation function, partial
derivation and chain rule

∆pwj ,k = γypj δ
p
k , δpk = F ′(spk )

No∑
o=1

δpowk,o

At initial step δpo = (opo − ypo )F ′(spo )

Back propagation is feasible because the computation of
deltas within one hidden layer needs only one value of input
from given neuron, weights as the input into following
layer and values of deltas from previous recursive step
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Setting of Hyper-parameters

Different results for various setting of algorithm
Hyper-parameters

Validation - training ratio
Momentum
Batch size
Number of epochs
Learning rate

Fixed learning rate for each epochs
Adaptive learning rate method (ADAM, RMSPROP)

Shortcoming of algorithm
Using different random seed you might obtain different results

Random initial weights
Randomness within algorithm (e.g. batching)
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Severity Model

Practical Application - Neural Networks

Our objective
j-th expected yearly payment EYo,t,c,j = µt,c,j of claim o
will be modeled with respect to reporting delay t and length of
claim settlement c , where j = 1, 2, . . . , c
Main objective is the modeling of development patterns
µt,c = (µt,c,1, µt,c,2, . . . , µt,c,c)T

Various structures, activation functions, number of neurons
and approaches were used
One stage approach
Two stage approach

One model for probability of non-zero claim
Another model just for positive claims
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Severity Model

Practical Application - One Stage Approach

Based on validation loss function (mean square error) model
with model with one hidden layer with 70 hyperbolic
tangent neurons output layer ReLu neuron
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Chosen approach is not suitable
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Severity Model

Practical Application - Two Stage Approach

Stage one - model with one hidden layer of 20 sigmoid
neurons output neuron sigmoid
Stage two - model with one hidden layer of 90 sigmoid
output neuron linear
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Practical Application - Two Stage Approach

Joined patterns for all development years/reporting delay
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Hurdle Models

Our data has mass at zero - reason for two stage approach
within neural networks

Histogram
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Hurdle model is proposed for such a situation

fhurdle (Yi = yi ) =

{
f1 (0) , yi = 0
(1− f1 (0)) f2(yi )

1−f2(0) = Φf2 (yi ) yi = 1, 2, . . . .
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Poisson Hurdle Models

Basic example of Poisson hurdle model

fhurdle (Yi = yi ) =


1− pi , yi = 0

pi
e{−λi}λyii(

1−e{−λi}
)
yi !

= Φf2 (yi ) yi = 1, 2, . . . ,

where pi is modeled by logistic regression

L(β,γ) =

∏
yi=0

P(yi = 0)

∏
yi>0

P(yi > 0)f2(yi )


=

∏
yi=0

1
1 + eX iβ

∏
yi>0

eX iβ

1 + eX iβ

e−e
Z iγeZ iγyi(

1− e−e
Z iγ
)
yi !


=

∏
yi>0

eX iβ
n∏

i=1

1
1 + eX iβ

∏
yi>0

e−e
Z iγeZ iγyi(

1− e−e
Z iγ
)
yi !
.



Due to the independence of the Yi ’s, it is possible to factor
the likelihood function into L1(β) and L2(γ)

The factorization allows us to maximize L1(β) and L2(γ)
separately
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Practical Application - Hurdle Models

Due to the specifics of non-zero part of our data it can be
viewed as count data

Poisson vs. negative binomial
Possible improvement Gamma ...

Due to the convergence issue merging last two levels
within covariates
Based on AIC negative binomial hurdle model was chosen
Simplification of linear predictor for hurdle component

Excluding development year/reporting delay (not statistically
significant)
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Practical Application - Hurdle Models

Less flexible than patterns from neural networks due to the
lower number of parameters - may lead to better prediction
(further investigation and back-testing)
Possible improvement by including interactions - leads to more
flexible patterns
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The End

Questions?

Thank you for your attention.

Michal Gerthofer
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B.M. Bolker and M.E. Brooks and C.J. Clark
Generalized linear mixed models: a practical guide for ecology
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Trends in ecology & evolution, 24(3):127–135, 2009.

P.J. Diggle and P. Heagerty and K.Y. Liang and S.L. Zeger
Analysis of Longitudinal Data 2nd ed..
Oxford University Press, Reading, Massachusetts, 2002.

E.L. Kaplan.
Nonparametric estimation from incomplete observations.
J. Amer. Stat. Assoc., 53:457–481, 1958.

J.F. Lawless
Statistical Models and Methods for Lifetime Data, 2nd ed..
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Further reading II
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