Functional Profile Techniques For Claims Reserving

Michal Pešta

Charles University, Prague

Czech Society of Actuaries – Actuarial Seminar 2025

October 24, 2025

Joint work: Matúš Maciak (Charles U) and Ivan Mizera (U of Alberta)

Motivation and aims

Forecasting costs ... a front burner in empirical economics

- ▶ **Risk reserving assessment analysis** in non-life insurance amounts to predict stochastically the overall loss reserves to cover possible claims.
- ➤ The most common reserving methods are based on different parametric approaches using aggregated data structured in the run-off triangles.
- ▶ We propose a rather **non-parametric approach**, which handles the underlying loss development triangles as **partially observed functional profiles**.
- ► Three competitive functional-based reserving techniques, each with slightly different scope, are presented.
- ▶ The claim reserve distribution is predicted through **permutation bootstrap**.

Run-off or loss development triangles

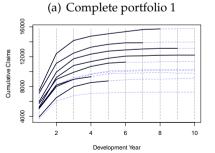
Accident			Development year j		
year i	1	2	•••	n-1	n
1	Y _{1,1}	Y _{1,2}		$Y_{1,n-1}$	Y _{1,n}
2	Y _{2,1}	Y _{2,2}	• • •	$Y_{2,n-1}$	
			·		
÷	:	÷	$Y_{i,n+1-i}$		
n-1	$Y_{n-1,1}$ $Y_{n,1}$	$Y_{n-1,2}$			
n	Y _{n,1}				

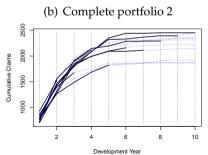
Table: Run-off triangle with the **observed cumulative claim amounts** $Y_{i,j}$ for $i + j \le n + 1$.

Development profiles

Accid.	Development year j									
year i	1	2	3	4	5	6	7	8	9	10
1	5244	9228	10823	11352	11791	12082	12120	12199	12215	12215
2	5984	9939	11725	12346	12746	12909	13034	13109	13113	13115
3	7452	12421	14171	14752	15066	15354	15637	15720	15744	15786
4	7115	11117	12488	13274	13662	13859	13872	13935	13973	13972
5	5753	8969	9917	10697	11135	11282	11255	11331	11332	11354
6	3937	6524	7989	8543	8757	8901	9013	9012	9046	9164
7	5127	8212	8976	9325	9718	9795	9833	9885	9816	9815
8	5046	8006	8984	9633	10102	10166	10261	10252	10252	10252
9	5129	8202	9185	9681	9951	10033	10133	10182	10182	10183
10	3689	6043	6789	7089	7164	7197	7253	7267	7266	7266

Accid.	Development year j									
year i	1	2	3	4	5	6	7	8	9	10
1	794	1277	1848	2080	2352	2441	2442	2452	2452	2452
2	847	1427	1796	2084	2322	2331	2367	2393	2393	2459
3	701	1317	1912	2147	2196	2285	2290	2291	2359	2359
4	808	1423	1844	1993	2091	2093	2110	2122	2142	2142
5	756	1465	1819	1993	2096	2160	2206	2216	2219	2217
6	771	1266	1489	1685	1822	1836	1857	1910	1919	1918
7	723	1562	1895	2115	2266	2314	2314	2313	2313	2313
8	862	1397	1679	1775	1858	1858	1859	1863	1863	1863
9	930	1523	1971	2150	2197	2224	2292	2332	2341	2341
10	825	1312	1556	1724	1825	1854	1872	1872	1872	1872





The proposed methods

- ► The building block of all of the proposed methods are so-called **functional development profiles**, "patterns of loss emergence" (Clark, 2003)
- ▶ To this end, however, we do not model them parametrically, but rather seek how to do it in **non-parametric ways** (Maciak, Mizera, and Pešta, 2022)

PARALLAX: Parallel approximation of missing fragments

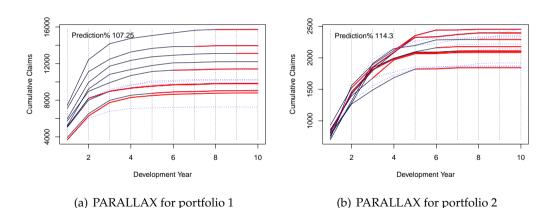
- ▶ Set the observed as the predicted $\widehat{Y}_{i,j} = Y_{i,j}$ for i = 1, ..., n and i = 1, ..., n + 1 i
- ► Find the most similar development profile

$$\widehat{\ell}_{i,j} = \arg\min_{\ell \in \{1,\dots,n-i\}} \left| \widehat{Y}_{i,j} - Y_{\ell,j} \right| \tag{1}$$

► Predict the unobserved (future) Y_{i,i+1} such that

$$\widehat{Y}_{i,j+1} = \widehat{Y}_{i,j} + \left(Y_{\widehat{\ell}_{i,j},j+1} - Y_{\widehat{\ell}_{i,j},j}\right)$$
(2)

PARALLAX: Parallel approximation of missing fragments

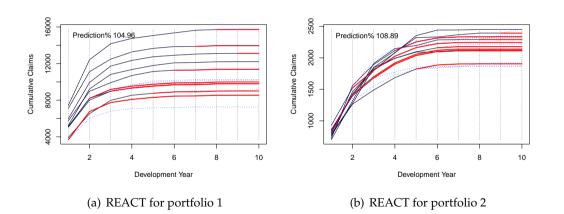


REACT: Approximation by the most recent accident year

- ▶ Set the observed as the predicted $\widehat{Y}_{i,j} = Y_{i,j}$ for i = 1, ..., n and j = 1, ..., n + 1 i
- ▶ Predict the unobserved (future) Y_{i,i+1} such that

$$\widehat{\mathbf{Y}}_{i,j+1} = \widehat{\mathbf{Y}}_{i,j} + (\widehat{\mathbf{Y}}_{i-1,j+1} - \widehat{\mathbf{Y}}_{i-1,j})$$
(3)

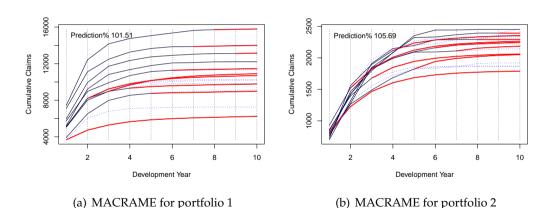
REACT: Approximation by the most *re*cent *accident* year

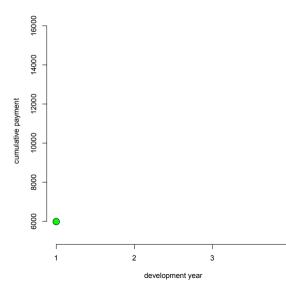


MACRAME: Markov chain fragment approximation

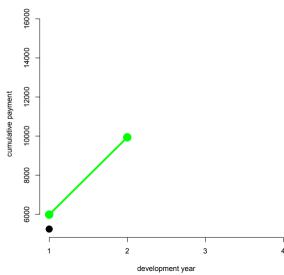
- ► Calculate incremental claims $X_{i,j} = Y_{i,j} Y_{i,j-1}$
- ► Set $\widehat{X}_{i,j} = X_{i,j}$ and $\widehat{Y}_{i,j} = Y_{i,j}$ for i = 1, ..., n and j = 1, ..., n + 1 i
- ▶ Use the states S and transform $\widehat{X}_{i,j}$ into $U_{i,j}$ for $i=1,\ldots,n$ and $j=1,\ldots,n+1-i$ such that $U_{i,j}=s$, if $\widehat{X}_{i,j}\in[g_{k-1},g_k)$ and $S\ni s\in[g_{k-1},g_k)$
- ► Calculate the transition probability estimates $\widetilde{p}(s, s')$
- ▶ Predict the unobserved $X_{i,n+1-i+h}$ as $\widehat{X}_{i,n+1-i+h} = \boldsymbol{c}(U_{i,n+1-i})^{\top} \widetilde{\mathbb{P}}^{h} \boldsymbol{s}$, where $\boldsymbol{s} = (s_1, \dots, s_t)^{\top}$ and $\boldsymbol{c}(U_{i,n+1-i})^{\top} = (\mathbb{I}\{U_{i,n+1-i} = s_1\}, \dots, \mathbb{I}\{U_{i,n+1-i} = s_t\})$
- ► Compute the predicted cumulative amount $\widehat{Y}_{i,n+1-i+h} = \widehat{X}_{i,n+1-i+h} + \widehat{Y}_{i,n-i+h}$
- ► For missing at random, cf. Delaigle and Hall (2013) and Delaigle and Hall (2016)

MACRAME: *Ma*rkov *c*hain *fragme*nt approximation

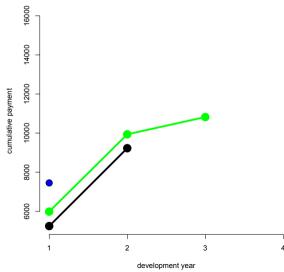




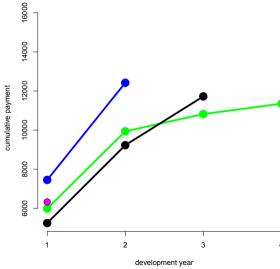
So

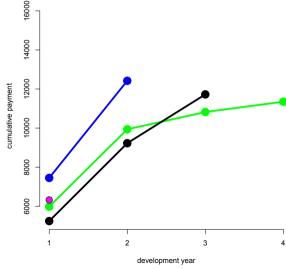


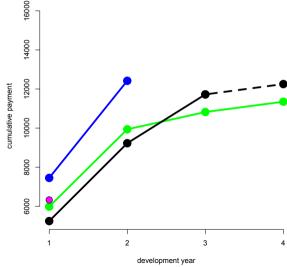
So

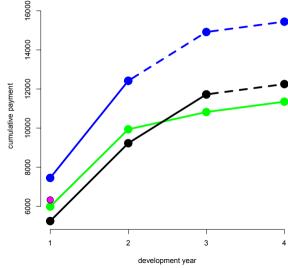


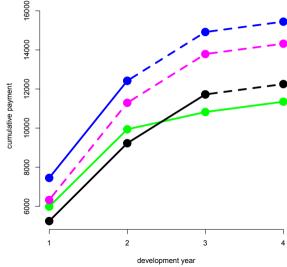
So

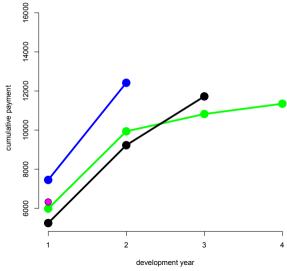




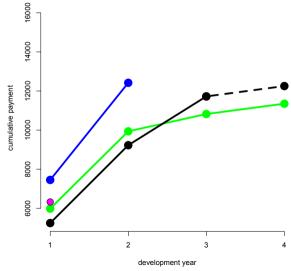


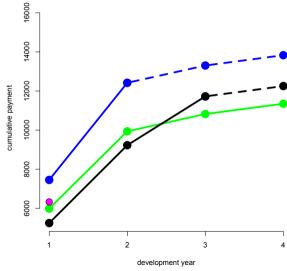


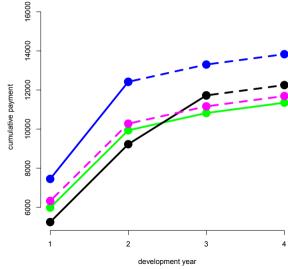




15 / 30







It started in Banff ...

... and ended in Oberwolfach

Rigorous results in theoretical setting – PARALLAX

$$\widehat{f}_{i,j}^{(n)} \xrightarrow{\mathsf{L}_2\left(\mathsf{T}_{i,j}^{(n)}\right)} \mathsf{f}_j$$
 in probability P

The conditional mean square error of the PARALLAX estimator of fi is

$$\mathsf{E}\left[\left\{\widehat{\mathsf{f}}_{\mathsf{i},\mathsf{j}}^{(n)} - \mathsf{f}_{\mathsf{j}}\right\}^{2} \middle| \mathsf{T}_{\mathsf{i},\mathsf{j}}^{(n)}\right] = \frac{\sigma_{\mathsf{j}}^{2} Y_{\widehat{\ell}_{\mathsf{i},\mathsf{j}},\mathsf{j}}}{Y_{n+1-\mathsf{j},\mathsf{j}}^{2}} + (\mathsf{f}_{\mathsf{j}} - 1)^{2} \left(\frac{Y_{\widehat{\ell}_{\mathsf{i},\mathsf{j}},\mathsf{j}}}{Y_{n+1-\mathsf{j},\mathsf{j}}} - 1\right)^{2} \quad [\mathsf{P}]\text{-a.s.,}$$

when $\kappa = 1$, and, for $i + j - n = \kappa > 1$, it becomes

$$\mathsf{E}\left[\left\{\widehat{\mathsf{f}}_{\mathsf{i},\mathsf{j}}^{(n)} - \mathsf{f}_{\mathsf{j}}\right\}^{2} \middle| \mathsf{T}_{\mathsf{i},\mathsf{j}}^{(n)}\right] \\ \sigma_{\mathsf{j}}^{2} \mathsf{Y}_{\widehat{\rho}_{\cdots},\mathsf{j}}$$

$$= \frac{\sigma_{j}^{2} Y_{\widehat{\ell}_{i,j},j}}{Y_{i,n+1-i}^{2} \prod_{k=n+1-i}^{j-1} \left\{ \widehat{f}_{i,k}^{(n)} \right\}^{2}} + (f_{j}-1)^{2} \left\{ \frac{Y_{\widehat{\ell}_{i,j},j}}{Y_{i,n+1-i} \prod_{k=n+1-i}^{j-1} \widehat{f}_{i,k}^{(n)}} - 1 \right\}^{2} \quad [P]\text{-a.s.}$$

M. Pešta (Charles University)

Rigorous results in theoretical setting – REACT

$$\widetilde{f}_{j}^{(n)} \xrightarrow[n \to \infty]{L_{2}(T_{n+1-j,j}^{(n)})} f_{j}$$
 in probability P

The conditional mean square error of the REACT estimator of f_j is

$$\mathsf{E}\left[\left\{\widetilde{\mathsf{f}}_{j}^{(n)} - \mathsf{f}_{j}\right\}^{2} \middle| \mathsf{T}_{n+1-j,j}^{(n)}\right] = \frac{\sigma_{j}^{2} \mathsf{Y}_{n-j,j}}{\mathsf{Y}_{n+1-j,j}^{2}} + (\mathsf{f}_{j} - 1)^{2} \left(\frac{\mathsf{Y}_{n-j,j}}{\mathsf{Y}_{n+1-j,j}} - 1\right)^{2} \quad [\mathsf{P}]\text{-a.s.}$$

Rigorous results in theoretical setting – MACRAME

$$\begin{split} \widetilde{p}(s_1,s_2) &= p(s_1,s_2) + O_P(n^{-1/2}), \ n \to \infty, \\ \mathsf{E}\left[\widehat{\mathsf{E}}\left\{U_{i,j+1}\right\}\right] &= \mathsf{E}\left[U_{i,j+1}\right] \end{split}$$

Resampling functional development profiles without replacement

- ▶ We start with the **predicted lower triangle** $\{\widehat{Y}_{i,j}: i=2,...,n; j=n+2-i,...,n\}$, where the upper triangle predicted elements are kept as the original ones, i.e., $\widehat{Y}_{i,j}=Y_{i,j}$ for $i+j \le n+1$.
- ▶ Consequently, the full predicted square $\{\widehat{Y}_{i,j}\}_{i=1,j=1}^{n,n}$ is **standardized** such that each row value is divided by the first positive value within the row (from the left), i.e.,

$$\widetilde{Y}_{i,j} := \widehat{Y}_{i,j}/\widehat{Y}_{i,p_i}, \quad p_i = min\left\{j \in \{1,\dots,n\} \colon \, \widehat{Y}_{i,j} > 0\}\right\}.$$

References

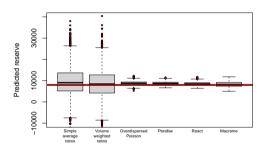
Permutation bootstrap

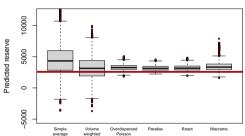
Introduction

- Next, the standardized square $\{\widetilde{Y}_{i,j}\}_{i=1,j=1}^{n,n}$ is resampled in **a row-wise manner without replacement**. Formally speaking, for every permutation $\pi^{(b)}: (1,\ldots,n) \mapsto (\pi^{(b)}(1),\ldots,\pi^{(b)}(n))$, where $b=1,\ldots,B$ such that $\pi^{(b)} \neq \pi^{(s)}$ if $b \neq s$, we obtain a permuted square $\{\widetilde{Y}_{\pi^{(b)}(i),j}\}_{i=1,j=1}^{n,n}$.
- ▶ We apply this technique to our algorithms proposed by re-running the algorithm in question on the **cut upper triangles** $\{\widetilde{Y}_{\pi^{(b)}(i),j}:\pi^{(b)}(i)+j\leqslant n+1\}$, obtaining thus the newly predicted standardized cumulative amounts $\{\widecheck{Y}_{i,j}^{(b)}\}_{i,j}$ for $i=2,\ldots,n$ and $j=n+2-i,\ldots,n$.
- ▶ Finally, the predicted standardized $\breve{Y}_{i,j}^{(b)}$'s are **back-standardized** yielding the bootstrapped predicted values

$$\left\{\widecheck{Y}_{i,j}^{(b)} := \widecheck{Y}_{i,j}^{(b)} \widehat{Y}_{i,p_i}\right\}_{i,i} \quad \text{for} \quad i=2,\ldots,n \quad \text{and} \quad j=n+2-i,\ldots,n.$$

Bootstrapped loss reserve distribution





(a) Portfolio 1

(b) Portfolio 2

Empirical comparisons – real data

- ➤ 518 run-off triangles from the National Association of Insurance Commissioners (NAIC) database (Meyers and Shi, 2011)
- ▶ We a priori eliminated triangles with only zero observed claim amounts in the last four accident periods and also those triangles having 8 or more development profiles identically equal to zero
- (i) 130 run-off triangles that were ODP compliant (with only non-negative increments, but profiles being entirely zero not allowed)
- (ii) 299 not ODP compliant triangles (negative increments exists, but still no entirely zero profiles)
- (iii) 89 remaining triangles that could be considered "rather atypical", but are still not uncommon in the actuarial practice

Out-of-sample bootstrap performance measures

Reserve% gives an absolute relative difference of the predicted reserve and the true reserve defined for each triangle as $100 imes \left| \frac{\text{predicted reserve}}{\text{true reserve}} - 1 \right|$ and averaged over all triangles in the given scenario (smaller values are better); BootCoV% expresses a coefficient of variation for the bootstrapped reserve distribution relative to the bootstrap mean $100 \times \frac{\text{Std.Dev(bootstrapped reserves)}}{\text{Avg(bootstrapped reserves)}}$ averaged, again, over all triangles in the given scenario (smaller values are better); **BootVaR**_{.995} denotes the 99.5% quantile of the bootstrap distribution relative to the bootstrapped mean $\frac{\text{Quantile}_{0.995}(\text{bootstrapped reserves})}{\text{Avg}(\text{bootstrapped reserves})}$ and averaged over all triangles in the given scenario (smaller values are better); BootQnt 950 provides a percentage proportion of the triangles in the given scenario for which the true reserve is dominated by the 95% quantile of the bootstrapped distribution (values closest to 95% are preferred).

Claims reserves evaluation I

Method	Reserve%	BootCoV%	BootVaR.995	BootQnt.950
Average	58.79 (186.00)	79.46 (144.67)	3.67 (3.57)	100.00%
Weighted	47.13 (130.91)	53.60 (61.46)	2.63 (1.81)	98.46%
ODP Model	47.10 (130.89)	16.98 (10.16)	1.54 (0.39)	86.92%
PARALLAX	57.85 (125.45)	22.34 (16.13)	1.59 (0.46)	96.92%
REACT	43.19 (78.28)	24.08 (18.03)	1.64 (0.51)	97.69%
MACRAME	45.32 (76.43)	23.93 (12.65)	1.73 (0.42)	95.38%

Table: Overall empirical performance of six claims reserving techniques when applied to the group (i), 130 **ODP compliant** run-off triangles from Meyers and Shi (2011). The corresponding standard deviations are given in parentheses; two best results are indicated by bold typeface.

Claims reserves evaluation II

Method	Reserve%	BootCoV%	BootVaR.995	BootQnt.950
Average	215.95 (1128.7	7)4045.61 (4.0e+04)	43.14 (461.41)	99.67%
Weighted	541.33 (6135.2	4)—3e+03 (2.3e+04)	-7.43 (132.37)	97.99%
Chainladder	541.33 (6135.2	<i>4)</i> 29.78 (212.59)	1.97 (7.58)	83.28%
PARALLAX	68.83 (132.40)	9.53 (628.55)	1.70 (11.04)	92.98%
REACT	97.85 (334.97)) 66.60 (182.67)	2.92 (4.99)	94.31%
MACRAME	68.38 (93.76)	51.26 (36.96)	2.75 (1.59)	91.97%

Table: Empirical performance of six claims reserving techniques applied to the group (ii), 299 "rather typical" but ODP non-compliant run-off triangles from Meyers and Shi (2011). The corresponding standard deviations are given in parentheses; two best results are indicated by bold typeface.

Claims reserves evaluation III

Method	Reserve%		Boot	CoV%	Boot	/aR.995	BootQnt.950
Average	255.88	(654.91)	-2e+03	(2.1e+04)	-47.74	(505.00)	91.01%
Weighted	181.32	(526.35)	4.6e+04	(4.3e+05)	167.99	(1492.61)	91.01%
Chainladder	181.32	(526.35)	177.17	(472.73)	6.02	(11.65)	79.78%
PARALLAX	142.08	(567.07)	69.77	(75.02)	3.09	(4.63)	77.53%
REACT	111.03	(256.82)	240.60	(1294.93)	7.94	(35.34)	76.40%
MACRAME	111.02	(141.21)	256.41	(1175.31)	10.25	(52.48)	69.66%

Table: Empirical performance of six claims reserving techniques applied to the group (iii), 89 "atypical" run-off triangles from Meyers and Shi (2011). The corresponding standard deviations are given in parentheses; two best results are indicated by bold typeface.

Conclusions

Three unsupervised loss reserving techniques based on **non-parametric and distribution free approaches** offering the following advantages:

- (i) they are simple, straightforward, and easily applicable;
- (ii) they require **neither distributional nor parametric assumptions** and apply to all kinds of run-off triangles, including those with negative incremental cells or zero cumulative claim amounts over some development periods;
- (iii) various stochastic model assumptions can be postulated in order to derive **desirable statistical properties** serving as the methods' **justifications**;
- (iv) it is straightforward to obtain also the **overall reserve distributions via bootstrapping** techniques;
- (v) the proposed methods are also robust against outliers;
- (vi) **R package**: ProfileLadder: Functional-Based Chain Ladder for Claims Reserving.

References

- Clark, D. R. (2003). LDF curve-fitting and stochastic reserving: A maximum likelihood approach. *Casualty Actuarial Society E-Forum, Fall* 2003, 41–92.
- Delaigle, A. and P. Hall (2013). Classification using censored functional data. *J. Am. Stat. Assoc.* 108(504), 1269–1283.
- Delaigle, A. and P. Hall (2016). Approximating fragmented functional data by segments of Markov chains. *Biometrika* 103(4), 779–799.
- Maciak, M., I. Mizera, and M. Pešta (2022). Functional profile techniques for claims reserving. *ASTIN Bull.* 52(2), 449–482.
- Meyers, G. G. and P. Shi (2011). Loss reserving data pulled from NAIC Schedule P. [Online; Available from https://www.casact.org/publications-research/research/research-resources/loss-reserving-data-pulled-naic-schedule-p; Updated September 01, 2011; Accessed June 10, 2014].