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Terminology

- X j ... daim amountts in developwent year j with
accident year i

- X;; stands for the incremental claims in accident
year i made In accounting year i + j

- n ... current year — corresponds to the most
recent accident year and development period
- Our data history consists of
richt-ancled isosceles trianales X ;, where
i=1,....nand j=1,....n+1—1
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Notation

- C;j ... cumulative paywents in oriain year i after j
developmentt periods

J
Oy = Z 26
k=1

- Cij; ... 8 random variagle of which we have an
orservation i$i+j<n+1

- Aim is to estimate the uttimate claims amount C; ,
and the outstanding claims reserve

IR = Ci,n o Cz‘,n—o—l—z‘, 1= 2y oo0gil)

By completing the trisngle iInto a sqQuare
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Chain ladder

Cn E[Ci7j+1|(]i,1, o0 & ,Ci,j] = ijZ-,j
(21 Var[CmH\Ci,l, ik CiJ] = O'?ng, a€eR
(31 Accident years [C;1,...,C;,) 8re independent
vectors



Development factors
(link ratios) f;

G
e ZE”—?JCLZﬁ =01
SN,

fi =1 (assumina no tail)




Mack or linear
rearession

- a=0...linear rearession (No intercept,
homoscedastic) for [C, j, C, j+1] satisfies CL

- a=1...Mack (I993), But also the Aitken (noO
intercept, heteroscedastic) rearession model with
weiahts C;!

- smoothing (and extrapolation) of development
factors possigle



LHtimates and reserves

- UHtimate claims amounts C; ,, are estimated By
Cin =Cint1-i X J/cﬁ)ki XX ﬁ(ﬁ)l
- Reserves R; are, thus, estimated By

R; = @n — Ciny1—i = Ciny1- (J?T(Li)l,i X X ﬁ@l - 1)



Generalized Linear
Models

- 3 flexiele generalization of ordinary
linear rearession

- formulated ry John Nelder and R.orert
Wedderrurn as a way Of unifying various other
statistical models, incduding linear rearession,
loaistic rearession and Poisson rearession




GLM: 3 elementts

[ random component: outcome of the
dependent variagles Y from the exponential family,
le.,

fy(y; 0, ¢0) = exp {[y0 — b(0)]/a(®) + c(y, $)}

where 6 is canonical parameter, ¢ is
dispersion parameter and EY; = p;

2. systematic component: linear predictor (vmean
structure)

n=Xp
3. link: function g
mi = g(;)



Exponential family

- include many of the most common distrirutions,
including the Normal, exponential, Gamma,
chi-sQuared, Beta, Dirichlet, Bernoulli, categorical,
Poisson, Wishart, Inverse Wishart and many
others

- 8 nuUWMBer Of common distrirutions are exponential
£amilies only when certain parameters are
considered fixed and known, e.a., Binomial (with
fixed numeer of trials), multinomial (with fixed
NnuWBer Of trials), and neaative Binomial (with fixed
Nnumser of failures)

- common distrisutions that are
Not exponential £amilies are Student’s t, most
Mmixture distrieutions, and even the family of
uniform distrisutions with unknown Bounds




Canoniecal link —
sufficlent statistic

- exponenttial family
EY = p=10/(0), Vary =b"(0)a(¢) =V (n)a(s)

- distrieution +— link function (sutficient statistic
+— canonieal link)
» Nnormal ... identity: u; = X; .3
» @amma (exponential) ... inverse (reciprocal):
/111‘_1 = Xi,tﬁ
» Poisson ... logarithm: log(u;) = X; 3
ginomial (murtinomial) ... loait: log (1’?) = X;.0

v

\/

inverse Gaussian ... reciprocal squared: u; > = X; .3



Link functions

loait 1 = log{u/(1 — p)}

Pro.it n =& 1(u)

complementary loa-loa n = log{—log(1 — p)}
power £amily of links

A A
g W=D A0 [ A
log p, A=0; logu, A=0.



E stimation

- estimation of the parameters via
maximum likelihood, Quasi-likelihood or
Bayesian techniques




N(p, %)

- support (—oo, +00)

- dispersion parameter ¢ = o>
- cumulant function b(0) = 6%/2
e i — —% (% + log(2ﬂ'¢))

S GE=E i =)

- canonical link O(u): identity

- variance function V(u) =1



Po(p)

- support {0,1,2,...}

- dispersion parameter ¢ =1

- cumulant function b(0) = exp{0}
- c(y,¢) = —logy!

- (0) = EgY = exp{0}

- canonical link O(u): loa

- variance function V(u) = p



[y, v)

- support (0, +o00)

- VarY = pv

- dispersion parameter ¢ = v~
- cumulant function b(f) = —log{—6}
- ¢(y,¢) = vlog(ry) —logy —logI'(v)

- pu(0) =EpY =-1/0

- canonical link 6(p): reciprocal
2

1

- variance function V() = p



Mack’s model as GLM

- reformulate Mack’s model as a8 model of ratios

Cij+1 Cijt1 g
E|2E =7 and V L T o e
[ Cij ] Jien ar[ T |l ’]} Ciy

- conditional weighted normal GLM

Cij+1 of
) N s D
Cz7] fJ’ 01/7]

- Mack’s model was Nnot derived/desianed as a GLM
But a conditional weicghted normal GLM aives the
same estimates




GLM for trisnales

- independent incremental claims X;j, i+ j <n+1
» overdispersed Poisson distrieuted X;;

E[XZJ] = [ij and Var[Xij] = ¢Mij
» Ganmma distriruted Xij
E[XU] = Wij and Var[Xij] = QZSLL?J

- loaarithmic link function

log(psj) =v+ i+ 65, ar=p=0



GLM for trianales |l

- overdispersed Poisson with log link provides
asywmptotically same parameter estimates, predicted
values and prediction errors

- pOssiBle extensions:

» Hoerl curve

log(pij) = v + i + B; log(j) + 4,35
» smoother (semiparametric)

log(pij) = v + a; + s1(log(j)) + s2(5)



Estimation in trianales

- ML (maximum likelihood) ... likelihood

n n+l-—
X):H H (Xij; 035, 9)

- maximize log-likelihood wrt. parameters of wu,
which is an araument of 0, ie, 0(u(a, B))

I there is Nno overdispersed Poisson distrisution
(only i£ thinking of neaative rinomial

- QML (Quasi-maximum likelihood). .. Quasi-likelihood
for ODP

n n+l—

log Q(p; X Z Z &(Xij log pij — pij) + const
=il g=ll



Generalized additive
Models

- GAM | extension of GLM, with the linear
Predictor Being replaced By 8 nON-parametric
smoother

p
Mg =D ok(Xsj)
k=1

- s(z) represents a non-parametric smoother on z,
which may Be chosen from several different types
Of smoother, such as locally weichted rearession
smoothers (loess), cugic smoothing splines and
kernel smoothers



GAM

- Ex: smoothing (trade-off retween smoothness
and £it) for univariate (p = 1) cusic spline with
Nnormal distrirsution

min ¢  "[X; — s(Xi)]” + A / [s" (t))%dt

i,J



Bayesian approach

- proelem of instarility in the proportion of
uttimate claims paid in the early development years,
causing a8 method such as the CL to produce
unsatisfactory resuits when applied mechanically

- to starilize the results using an
external initial estimate of utimate claims




Bornhuetter-Ferauson

- reminder £rom CL: outstandina claims

RN | s e — 1)

Assumptions
) E[Ci7j+k|CZ-71, Lok o Ciyj] = CZ',]‘ aF (ﬁj+k - 5j)/142 and
E[C;,1] = Bips
1<i<n, 1<j<n, 1<k<n—j
(1) accidenct years [Ciq1,...,Cip], 1 <i<nare
independentt

- estimate CPF for uitimates
- Bayesian approach to CL



Bornhuetter-Ferauson
Method

- a very rorust method since it does Nnot consider
outliers in the orservations

Implied Assumptions

(N E[Ci ;] = B
Bj>0)ui>07/8n:1
1<i1<n,1<5<n
() accidentt years [Ciq,...,Cin), 1 <i<nare
independent

- "iImplied"assumptions are weaker than the oriainal
BFE assumptions (and, hence, not equivalent)



BFE Estimator

BFE estimator of uitimate from the latest
CA'an = (05 IR Bri1) i

comparing CL and BE model ~ []1Z; f, ' plays the
role of 3; and, therefore,

need a prior estimate for u;

i s often a plan value from a strateaic Business
plan or the value used for premium caleulations

1; should re estimated Before one has any
oBrservations (ie., should Be a pure prior estimate
BRased on expert opinion) |




Comparison of BF and
CL Estimators

- i# the prior estimate of uttimates p; is equal to
the CL estimate of uHimates, then the BE and CL
estimators underline

- BF:

CEF = Cin—i1 + (1 = Bnsr1)hi

- CL: N A N
Col = Cinoiva + (1 — Bos11)CE
- BFE ditfers from the CL in that the CL estimate
of utimate claims is replaced By an aklternative
estimate rased on external information and
expert judaement



Bayesian Models

- 3 prior distrirution £or row (utimate) parameter

- Ex: ODP model, where an ovious candidate is
wi ~ independent I'(v;, ;)

such that
e i
i = ~



Predictive distrirution

- posterior predictive distrirution of incremental
claims X; ; is an over-dispersed
neaative einomial distrieution with mean

Vi 1
51‘ fjfl XK 000 &8 fn,1

2 4O SRl = 7 (fi=1—1)

where )

fi—1X..Xfn1

— ‘ 1
0i¢p + fi—iXeXfn1

.3



Credigility formula

- a8 natural trade-off retween two competing
estimates for X ;

; 1 1
Ci7j_1 and i

e 7

- Bayesian model has the CL as one extreme
(no prior information arout the row parameters)
and the BF as the other (perfect prior
information arout the row parameters)




Bayesian trade-off

- BF assumwes that there is perfect prior
information agout the row parameters (does not
use the data at all for one part of estimation)

... heroic assumption

- prefer to use something retween BFE and CL

- credigility factor Z;; coverns the trade-off
Between the prior mean and the data

- the further throuah the development we are, the

laraer F——~7— Becomes, and the more weiaht is
aiven to the CL ladder estimate

- choice of j; is governed By the prior precision of
the initial estimate £or utimates ... with recard
aiven to the over-dispersion parameter (ea.,
an initial estimate from the ODP)




Cape Cod

- another Bayesian-like approach

Assumptions

(h E[Cl,]] = Hﬂiﬂj
k>0,m>0,8>0,8,=1
1<i<n, 1<j<n, 1<k<n-—j
(1) accident years [C;q,...,Cin]l, 1<i<nare
independent

- estimate CC for uttimates
- equivalent to implied assumptions of BFE with

Hi = KT




Cape Cod Estimator

- main deficiency of DFM (CL) ... uHimate claims
completely depend on the latest diagonal claivms ~~
NOt rorust (sensitive to outliers)

- moreover, in [ona—tailed LoPs (ea., liagility) the
first orservation is NnOt representative

- one possikility is to smoothen outliers from the
latest (diaaonal) ~~ comgine BF and CL into
Benktander—Hovinen method

- another way is to make the diaaonal claims more
roeust ~ Cape Cod method

- CC estimator of uHimate from the latest

n—1
S Ger ~CC ACC
Cin =Cin—it1 —Cipnlipa + H FiCintit1
j=n—it+1



Generalised Cape Cod

m; ean Be interpreted as the premium received for
accident year i
k reflects the averace l0ss ratio
loss ratio for an accident year using the CL
estimate for the utimate claim
O
Ry = =
T H] N U " Br—irimi
initial expected ratio may Be set to the same value
derived from an overall weighted (‘rorusted™
averaae ratio (simple CC method)

Czn 141 > Ci,n—i—l—l

~0C _ Zn: Bn—iti®i . D1 Cin—iy1
>

o1 Bkt Dorq Br—it1T



Generalised Cape Caod |l

- roeusted value for latest (diagonal)

Cin—it1 = RCCmBr_it
- in the CC method, the CL iteration is applied to
the rorusted diagonal

0oC ~CC
C’i,n . Ci,n—i+1 o (1 = Bn_i+1)li T

- modification of a BFE type with modified a prior

RCCrm;
- generalised CC with decay factor 0 <d <1 ~
constant K¢ is replaced with [{C, ..., 8(Y] for

different accident years
e e (e Gl

- factor of 0...no smoothing (CL); factor of 1
...constant initial ratio (Simple CC)




Generalized estimating
eQuUations

- classical approaches to claims reserving proklem are
Based on the limiting assumption that the claims in
different years are independent variarles

- dependencies in the development years ~» classical
techniQues provide incorrect prediction

- NO distrirutional assumptions (avoiding distrirution
mMisspecification)



GEE

- run-off trianales as one of the most typical type
Of actuarial data comprise
correlated Ionaitudinal data (or cenerally
custered data), where an accident year
corresponds to a sugject

- daims within "sugject” should Be considered as
correlated ry nature

- incrementtal claims for accident year i € {1,...,n}
create a (n —14 1) x 1 vector X; = [Xi,la S ,X@n_H_l]T
and define their expectations

EXi = pi = [win, - - ’“iv"*‘l‘i]—r



Link function and linear
predictor

- accident year i and developmentt year j influence
the expectation of claivy amount via so-called
link function g In the following manner:

pij =g~ (21,0),

where ¢! is referred to as the inverse of scalar
link function g and z; ; is 8 p x 1 vector of
(fictional) covariates that arranaes the

impact Of accidentt and developmentt year on the
claim amount throuch model parameters 0 ¢ RP*!




Example of link

- ea, the Hoerl curve with the loagarithmic link
function can Be "coded" By desian matrix

ZiJ‘ = [1,(5171, e .,6,%7;,1 X (51’]‘, .., X 5n,ja

015 xlogl,..., 8, xlogn]"

and parameters of interest
0= [Vaala"'aanvﬁly'"aﬁnv)\la"'vAn]Ta

where §; ; corresponds to the Kronecker’s detta
- afterwards

log(pij) = v+ s + 3B + Ajlogj



Variance

- Besides link function g and linear predictor z; ;0 (ie,
mean structure u;), one Nneeds tO specify the
variance of claivy amounts

- suppose that the variance of incrementtal claims
ean Re expressed as
3 known function of of their expectations

VarX; ; = ¢h(pij),

where ¢ > 0 is a scale (dispersion) parameter



Workina correlation
Matrix

- in the GEE $framework, it is not necessary to
know the whole distrirution of the response (ea,
a distripution of the incremental caims) like in the
GILM setup

- sufficient to specify the variance of X;; and the
working correlation matrix

R, (,19) = R(n—i—H) X (n—i+1)

for incremental claivs in each accident year



Workina correlation
matrix |l

- correlation matrix differs $rom accident year to
accident year

- however, each correlation matrix depends only on
the s x 1 vector of unknown parameters 4, which
is the same for all the accident years

- conse@uenttly, the workina covariance matrix of
the incrementtal claims is

CovX; = ¢A)*R;(9)A)/?,

7

where A;is an (n—i+1) X (n—i+ 1) diagonal matrix
with h(u;;) as the jth diagonal element

- the Nname "working" comes from the fact that it is
Nnot expected to Be correctly specified



Choice of working
correlation matrix

- the simplest case is to assume uncorrelated
incremental claims, ie.,

n—i+1ln—i+1
Ri(W) =Lui1 = Gl ey "

- OppOsite extreme case is an unstructured
correlation matrix

R (0) SR AT et

such that 19]'7]' =1forj=1,....n—1+1and RL<19> is
positive definite



Choice of working
correlation matrix |l

- somewhere in Between, there lies an exchanaeakle
correlation structure

Ri(9) = {8 + (1 = §,)9} 50", 9=[,...,0]"

- an m—-dependent

Lig Jj =k,
Ri(9) = {ka}ﬁ?ll’nﬂﬂv Tik— 8 Y-k 0<|j—FK|l <m,
0, l7—kl>m

- an autorearesive AR(D correlation structure

GHENE ol e T



QRuasi-likelihood

- parameter estimation in the GEE framework is
performed in a way that the theoretical
Quasi-likelihood

T—p
Qz; 1) = / ———-du
(#:4) h(u)
Is used instead of the true loa-likelihood function

- Quasi-likelihood estimate in GEE setup is the
solution of the score-like equation system

00

n p T
Z |:8/1/z:| ¢—1A;1/2R;1(,'9)A 1/2(X “Z) —0¢c Rp
i=1
where [0p;/00] is 8 (n —i+ 1) X p matrix of partial
derivatives of u; with respect to the unknown
parameters 0



Further work

- claims generating process: incremental paid claims
X j to Be the sum of N;; (independent) claims of
amount Y, k=1,...,N;;

- Wright's model

- Tweedie compound distrirution




Conclusions

e

- GLM

- GAM

- BF

- Bayesian framework
- CC

- GEE
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