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Terminology

- Xi,j . . . claim amounts in development year j with

accident year i

- Xi,j stands for the incremental claims in accident

year i made in accounting year i+ j

- n . . . current year – corresponds to the most

recent accident year and development period

- Our data history consists of

right-angled isosceles triangles Xi,j , where

i = 1, . . . , n and j = 1, . . . , n+ 1− i



Run-off (incremental)

triangle

Accident Development year j
year i 1 2 · · · n− 1 n

1 X1,1 X1,2 · · · X1,n−1 X1,n

2 X2,1 X2,2 · · · X2,n−1
. . .

...
...

... Xi,n+1−i

n− 1 Xn−1,1 Xn−1,2
n Xn,1



Notation

- Ci,j . . . cumulative payments in origin year i after j
development periods

Ci,j =

j∑
k=1

Xi,k

- Ci,j . . . a random variable of which we have an

observation if i+ j ≤ n+ 1

- Aim is to estimate the ultimate claims amount Ci,n
and the outstanding claims reserve

Ri = Ci,n − Ci,n+1−i, i = 2, . . . , n

by completing the triangle into a square



Run-off (cumulative)

triangle

Accident Development year j
year i 1 2 · · · n− 1 n

1 C1,1 C1,2 · · · C1,n−1 C1,n

2 C2,1 C2,2 · · · C2,n−1
. . .

...
...

... Ci,n+1−i

n− 1 Cn−1,1 Cn−1,2
n Cn,1



Chain ladder

[1] E[Ci,j+1|Ci,1, . . . , Ci,j ] = fjCi,j

[2] Var[Ci,j+1|Ci,1, . . . , Ci,j ] = σ2jC
α
i,j , α ∈ R

[3] Accident years [Ci,1, . . . , Ci,n] are independent

vectors



Development factors

(link ratios) fj

f̂
(n)
j =

∑n−j
i=1 C

1−α
i,j Ci,j+1∑n−j

i=1 C
2−α
i,j

, 1 ≤ j ≤ n− 1

f̂ (n)n ≡ 1 (assuming no tail)



Mack or linear

regression

- α = 0 . . . linear regression (no intercept,

homoscedastic) for [C•,j , C•,j+1] satisfies CL

- α = 1 . . . Mack (1993), but also the Aitken (no

intercept, heteroscedastic) regression model with

weights C−1i,j
- smoothing (and extrapolation) of development

factors possible



Ultimates and reserves

- Ultimate claims amounts Ci,n are estimated by

Ĉi,n = Ci,n+1−i × f̂ (n)n+1−i × · · · × f̂
(n)
n−1

- Reserves Ri are, thus, estimated by

R̂i = Ĉi,n − Ci,n+1−i = Ci,n+1−i

(
f̂
(n)
n+1−i × · · · × f̂

(n)
n−1 − 1

)



Generalized Linear

Models

- a flexible generalization of ordinary

linear regression

- formulated by John Nelder and Robert

Wedderburn as a way of unifying various other

statistical models, including linear regression,

logistic regression and Poisson regression



GLM: 3 elements

1. random component: outcome of the

dependent variables Y from the exponential family,

i.e.,

fY (y; θ, φ) = exp {[yθ − b(θ)]/a(φ) + c(y, φ)}

where θ is canonical parameter, φ is

dispersion parameter and EYi = µi

2. systematic component: linear predictor (mean

structure)

η = Xβ

3. link: function g
ηi = g(µi)



Exponential family
- include many of the most common distributions,

including the normal, exponential, gamma,

chi-squared, beta, Dirichlet, Bernoulli, categorical,

Poisson, Wishart, Inverse Wishart and many

others

- a number of common distributions are exponential

families only when certain parameters are

considered fixed and known, e.g., binomial (with

fixed number of trials), multinomial (with fixed

number of trials), and negative binomial (with fixed

number of failures)

- common distributions that are

not exponential families are Student’s t, most

mixture distributions, and even the family of

uniform distributions with unknown bounds



Canonical link –

sufficient statistic

- exponential family

EY = µ = b′(θ), VarY = b′′(θ)a(φ) ≡ V (µ)ã(φ)

- distribution ←→ link function (sufficient statistic
←→ canonical link)

I normal . . . identity: µi = Xi,•β
I gamma (exponential) . . . inverse (reciprocal):

µ−1
i = Xi,•β

I Poisson . . . logarithm: log(µi) = Xi,•β

I binomial (multinomial) . . . logit: log
(

µi

1−µi

)
= Xi,•β

I inverse Gaussian . . . reciprocal squared: µ−2
i = Xi,•β



Link functions

- logit η = log{µ/(1− µ)}
- probit η = Φ−1(µ)

- complementary log-log η = log{− log(1− µ)}
- power family of links

η =

{
(µλ − 1)/λ, λ 6= 0,
logµ, λ = 0;

or η =

{
µλ, λ 6= 0,
logµ, λ = 0.



Estimation

- estimation of the parameters via

maximum likelihood, quasi-likelihood or

Bayesian techniques



N(µ, σ2)

- support (−∞,+∞)

- dispersion parameter φ = σ2

- cumulant function b(θ) = θ2/2

- c(y, φ) = −1
2

(
y2

φ + log(2πφ)
)

- µ(θ) = EθY = θ

- canonical link θ(µ): identity

- variance function V (µ) = 1



Po(µ)

- support {0, 1, 2, . . .}
- dispersion parameter φ = 1

- cumulant function b(θ) = exp{θ}
- c(y, φ) = − log y!

- µ(θ) = EθY = exp{θ}
- canonical link θ(µ): log

- variance function V (µ) = µ



Γ(µ, ν)

- support (0,+∞)

- VarY = µ2ν

- dispersion parameter φ = ν−1

- cumulant function b(θ) = − log{−θ}
- c(y, φ) = ν log(νy)− log y − log Γ(ν)

- µ(θ) = EθY = −1/θ

- canonical link θ(µ): reciprocal

- variance function V (µ) = µ2



Mack’s model as GLM

- reformulate Mack’s model as a model of ratios

E

[
Ci,j+1

Ci,j

]
= fj and Var

[
Ci,j+1

Ci,j

∣∣∣∣Ci,1, . . . , Ci,j] =
σ2j
Ci,j

- conditional weighted normal GLM

Ci,j+1

Ci,j
∼ N

(
fj ,

σ2j
Ci,j

)

- Mack’s model was not derived/designed as a GLM,

but a conditional weighted normal GLM gives the

same estimates



GLM for triangles

- independent incremental claims Xij , i+ j ≤ n+ 1
I overdispersed Poisson distributed Xij

E[Xij ] = µij and Var[Xij ] = φµij

I Gamma distributed Xij

E[Xij ] = µij and Var[Xij ] = φµ2
ij

- logarithmic link function

log(µij) = γ + αi + βj , α1 = β1 = 0



GLM for triangles II

- overdispersed Poisson with log link provides

asymptotically same parameter estimates, predicted

values and prediction errors

- possible extensions:

I Hoerl curve

log(µij) = γ + αi + βj log(j) + δjj

I smoother (semiparametric)

log(µij) = γ + αi + s1(log(j)) + s2(j)



Estimation in triangles
- ML (maximum likelihood) . . . likelihood

L(θ, φ;X) =

n∏
i=1

n+1−i∏
j=1

f(Xij ; θij , φ)

- maximize log-likelihood w.r.t. parameters of µ,

which is an argument of θ, i.e., θ(µ(α,β))

! there is no overdispersed Poisson distribution

(only if thinking of negative binomial)

- QML (quasi-maximum likelihood). . . quasi-likelihood

for ODP

logQ(µ;X) =

n∑
i=1

n+1−i∑
j=1

φ(Xij logµij − µij) + const



Generalized additive

models

- GAM . . . extension of GLM, with the linear

predictor being replaced by a non-parametric

smoother

ηij =

p∑
k=1

sk(Xij)

- s(x) represents a non-parametric smoother on x,
which may be chosen from several different types

of smoother, such as locally weighted regression

smoothers (loess), cubic smoothing splines and

kernel smoothers



GAM

- Ex: smoothing (trade-off between smoothness

and fit) for univariate (p = 1) cubic spline with

normal distribution

min

∑
i,j

[Xij − s(Xij)]
2 + λ

∫
[s′′(t)]2dt





Bayesian approach

- problem of instability in the proportion of

ultimate claims paid in the early development years,

causing a method such as the CL to produce

unsatisfactory results when applied mechanically

- to stabilize the results using an

external initial estimate of ultimate claims



Bornhuetter-Ferguson
- reminder from CL: outstanding claims

Ri = Ci,n+1−i(fn+1−i × . . .× fn−1 − 1)

Assumptions

(1) E[Ci,j+k|Ci,1, . . . , Ci,j ] = Ci,j + (βj+k − βj)µi and

E[Ci,1] = β1µi
βj > 0, µi > 0, βn = 1
1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n− j

(2) accident years [Ci,1, . . . , Ci,n], 1 ≤ i ≤ n are

independent

- estimate ĈBFi,n for ultimates

- Bayesian approach to CL



Bornhuetter-Ferguson

Method

- a very robust method since it does not consider

outliers in the observations

Implied Assumptions

(1) E[Ci,j ] = βjµi
βj > 0, µi > 0, βn = 1
1 ≤ i ≤ n, 1 ≤ j ≤ n

(2) accident years [Ci,1, . . . , Ci,n], 1 ≤ i ≤ n are

independent

- "implied"assumptions are weaker than the original

BF assumptions (and, hence, not equivalent)



BF Estimator
- BF estimator of ultimate from the latest

ĈBFi,n = Ci,n−i+1 + (1− β̂n−i+1)µ̂i

- comparing CL and BF model  
∏n−1
k=j f

−1
k plays the

role of βj and, therefore,

β̂j =

n−1∏
k=j

1

f̂k

- need a prior estimate for µi
- µ̂i is often a plan value from a strategic business

plan or the value used for premium calculations

- µ̂i should be estimated before one has any

observations (i.e., should be a pure prior estimate

based on expert opinion) !



Comparison of BF and

CL Estimators
- if the prior estimate of ultimates µi is equal to

the CL estimate of ultimates, then the BF and CL

estimators underline

- BF:

ĈBFi,n = Ci,n−i+1 + (1− β̂n−i+1)µ̂i

- CL:

ĈCLi,n = Ci,n−i+1 + (1− β̂n−i+1)Ĉ
CL
i,n

- BF differs from the CL in that the CL estimate

of ultimate claims is replaced by an alternative

estimate based on external information and

expert judgement



Bayesian Models

- a prior distribution for row (ultimate) parameter

- Ex: ODP model, where an obvious candidate is

µi ∼ independent Γ(γi, δi)

such that

Eµi =
γi
δi



Predictive distribution

- posterior predictive distribution of incremental

claims Xi,j is an over-dispersed

negative binomial distribution with mean[
Zi,jCi,j−1 + (1− Zi,j)

γi
δi

1

fj−1 × . . .× fn−1

]
(fj−1 − 1)

where

Zi,j =

1
fj−1×...×fn−1

δiφ+ 1
fj−1×...×fn−1



Credibility formula

- a natural trade-off between two competing

estimates for Xi,j

Ci,j−1 and
γi
δi

1

fj−1 × . . .× fn−1
= E[µi]

1

fj−1 × . . .× fn−1

- Bayesian model has the CL as one extreme

(no prior information about the row parameters)

and the BF as the other (perfect prior

information about the row parameters)



Bayesian trade-off
- BF assumes that there is perfect prior

information about the row parameters (does not

use the data at all for one part of estimation)

. . . heroic assumption

- prefer to use something between BF and CL

- credibility factor Zi,j governs the trade-off

between the prior mean and the data

- the further through the development we are, the

larger 1
fj−1×...×fn−1

becomes, and the more weight is

given to the CL ladder estimate

- choice of δi is governed by the prior precision of

the initial estimate for ultimates . . . with regard

given to the over-dispersion parameter (e.g.,

an initial estimate from the ODP)



Cape Cod

- another Bayesian-like approach

Assumptions

(1) E[Ci,j ] = κπiβj
κ > 0, πi > 0, βj > 0, βn = 1
1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n− j

(2) accident years [Ci,1, . . . , Ci,n], 1 ≤ i ≤ n are

independent

- estimate ĈCCi,n for ultimates

- equivalent to implied assumptions of BF with

µi = κπi



Cape Cod Estimator
- main deficiency of DFM (CL) . . . ultimate claims

completely depend on the latest diagonal claims  
not robust (sensitive to outliers)

- moreover, in long-tailed LoBs (e.g., liability) the

first observation is not representative

- one possibility is to smoothen outliers from the

latest (diagonal)  combine BF and CL into

Benktander-Hovinen method

- another way is to make the diagonal claims more

robust  Cape Cod method

- CC estimator of ultimate from the latest

ĈCCi,n = Ci,n−i+1 − ĈCCi,n−i+1 +

n−1∏
j=n−i+1

fjĈ
CC
i,n−i+1



Generalised Cape Cod
- πi can be interpreted as the premium received for

accident year i

- κ reflects the average loss ratio

- loss ratio for an accident year using the CL

estimate for the ultimate claim

κ̂i =
ĈCLi,n
πi

=
Ci,n−i+1∏n−1
j=n−i+1 fjπi

=
Ci,n−i+1

βn−i+1πi

- initial expected ratio may be set to the same value

derived from an overall weighted ("robusted")

average ratio (simple CC method)

κ̂CC =

n∑
i=1

βn−i+1πi∑n
k=1 βn−k+1πk

κ̂i =

∑n
i=1Ci,n−i+1∑n
i=1 βn−i+1πi



Generalised Cape Cod II
- robusted value for latest (diagonal)

Ĉi,n−i+1 = κ̂CCπiβn−i+1

- in the CC method, the CL iteration is applied to

the robusted diagonal

ĈCCi,n = Ci,n−i+1 + (1− βn−i+1)κ̂
CCπi

- modification of a BF type with modified a prior

κ̂CCπi
- generalised CC with decay factor 0 ≤ d ≤ 1  

constant κ̂CC is replaced with [κ̂CC1 , . . . , κ̂CCn ] for

different accident years

κ̂CCi = dκ̂CC + (1− d)κ̂i

- factor of 0 . . . no smoothing (CL); factor of 1
. . . constant initial ratio (Simple CC)



Generalized estimating

equations

- classical approaches to claims reserving problem are

based on the limiting assumption that the claims in

different years are independent variables

- dependencies in the development years  classical

techniques provide incorrect prediction

- no distributional assumptions (avoiding distribution

misspecification)



GEE

- run-off triangles as one of the most typical type

of actuarial data comprise

correlated longitudinal data (or generally

clustered data), where an accident year

corresponds to a subject

- claims within “subject” should be considered as

correlated by nature

- incremental claims for accident year i ∈ {1, . . . , n}
create a (n− i+ 1)× 1 vector Xi = [Xi,1, . . . , Xi,n−i+1]

>

and define their expectations

EXi = µi = [µi,1, . . . , µi,n+1−i]
>



Link function and linear

predictor

- accident year i and development year j influence

the expectation of claim amount via so-called

link function g in the following manner:

µi,j = g−1(z>i,jθ),

where g−1 is referred to as the inverse of scalar

link function g and zi,j is a p× 1 vector of

(fictional) covariates that arranges the

impact of accident and development year on the

claim amount through model parameters θ ∈ Rp×1



Example of link

- e.g., the Hoerl curve with the logarithmic link

function can be “coded” by design matrix

zi,j = [1, δ1,i, . . . , δn,i, 1× δ1,j , . . . , n× δn,j ,
δ1,j × log 1, . . . , δn,j × log n]>

and parameters of interest

θ = [γ, α1, . . . , αn, β1, . . . , βn, λ1, . . . , λn]>,

where δi,j corresponds to the Kronecker’s delta

- afterwards

log(µi,j) = γ + αi + jβj + λj log j



Variance

- besides link function g and linear predictor z>i,jθ (i.e.,

mean structure µi), one needs to specify the

variance of claim amounts

- suppose that the variance of incremental claims

can be expressed as

a known function of of their expectations

VarXi,j = φh(µi,j),

where φ > 0 is a scale (dispersion) parameter



Working correlation

matrix

- in the GEE framework, it is not necessary to

know the whole distribution of the response (e.g.,

a distribution of the incremental claims) like in the

GLM setup

- sufficient to specify the variance of Xi,j and the

working correlation matrix

Ri(ϑ) ∈ R(n−i+1)×(n−i+1)

for incremental claims in each accident year



Working correlation

matrix II
- correlation matrix differs from accident year to

accident year

- however, each correlation matrix depends only on

the s× 1 vector of unknown parameters ϑ, which

is the same for all the accident years

- consequently, the working covariance matrix of

the incremental claims is

CovXi = φA
1/2
i Ri(ϑ)A

1/2
i ,

where Ai is an (n− i+ 1)× (n− i+ 1) diagonal matrix

with h(µi,j) as the jth diagonal element

- the name “working” comes from the fact that it is

not expected to be correctly specified



Choice of working

correlation matrix

- the simplest case is to assume uncorrelated

incremental claims, i.e.,

Ri(ϑ) = In−i+1 = {δj,k}n−i+1,n−i+1
j,k=1

- opposite extreme case is an unstructured

correlation matrix

Ri(ϑ) = {ϑj,k}n−i+1,n−i+1
j,k=1

such that ϑj,j = 1 for j = 1, . . . , n− 1 + 1 and Ri(ϑ) is

positive definite



Choice of working

correlation matrix II
- somewhere in between, there lies an exchangeable

correlation structure

Ri(ϑ) = {δj,k + (1− δj,k)ϑ}n−i+1,n−i+1
j,k=1 , ϑ = [ϑ, . . . , ϑ]>

- an m-dependent

Ri(ϑ) = {rj,k}n−i+1,n−i+1
j,k=1 , rj,k =


1, j = k,
ϑ|j−k|, 0 < |j − k| ≤ m, ϑ = {ϑl}ml=1,

0, |j − k| > m

- an autoregresive AR(1) correlation structure

Ri(ϑ) = {ϑ|j−k|}n−i+1,n−i+1
j,k=1 , ϑ = [ϑ, . . . , ϑ]>.



Quasi-likelihood
- parameter estimation in the GEE framework is

performed in a way that the theoretical

quasi-likelihood

Q(x;µ) =

∫
x− µ
h(µ)

dµ

is used instead of the true log-likelihood function

- quasi-likelihood estimate in GEE setup is the

solution of the score-like equation system

n∑
i=1

[
∂µi
∂θ

]>
φ−1A

−1/2
i R−1i (ϑ)A

−1/2
i (Xi − µi) = 0 ∈ Rp,

where [∂µi/∂θ] is a (n− i+ 1)× p matrix of partial

derivatives of µi with respect to the unknown

parameters θ



Further work

- claims generating process: incremental paid claims

Xi,j to be the sum of Ni,j (independent) claims of

amount Y k
i,j , k = 1, . . . , Ni,j

- Wright’s model

- Tweedie compound distribution



Conclusions

- CL

- GLM

- GAM

- BF

- Bayesian framework

- CC

- GEE
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