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This presentation is based on Janousek and Pesta [2025].
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Figure: A non-life insurance claim progress illustration. The blue
color in the background represents the past. The red color in the
background represents the future that is to be predicted.
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S U1 beginning of insurance period
Uz end of insurance period (U; < U2).
[U1, Us] is called period insured

T1 accident date

T, reporting date (T, - Ty reporting delay)

T3 settlement time

T3 — T, settlement delay
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@ We need to build as homogeneous groups as possible in
order to use statistical tools such as LLN

@ Claims are grouped by accident years accident year = i if
(T € [1/1/i,31/12/i])
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Figure: An illustration of a run-off triangle.
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reserving periOd [17 l]
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X; the sum of all payments done for claims with accident
I
year i. (X =Y Xi)
i=1

Xi g4 the sum of all payments done for claims with accident

“+oo
year i reported in calendar year i +d. (X; = Y Xjq)
d=0

D maximal reporting delay

N; 4 the number of claims with accident year i and
reporting delay d.
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e ° X,.(‘:,) the sum of all payments done for v-th claim with
Jan Janousel accident year i, reported in calendar year i + d.

(XI d = E XI )
e (/i,d,v) now addresses each claim uniquely.

° X,(d)|

(id,v). (X = ZX,‘d|k>

e (i,d, k,v) now addresses each claim payment uniquely.

. Payments done in calendar year i + d + k for claim
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Notation for claim cash flows
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reserving reserves by years, e.g., next year's reserves. Thus, we look at
fEm Do) the claim payments, not as payments in year i + d + k but
rather as payments | = d + k years after the accident year i.

@ ;X; the sum of all payments for claims with accident year i

paid in year i + . (41X E ZXI(dlld)
@ X can be then rewritten as:
N.

I 1oL oL
X:ZX, ZZ/X, ZZZ X/(Z’)Hd

i=1 i=1 /=0 i=1/=0d=0v=1
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[ (X = > 1—iXi.)
i=max{1,/—L}
o Altogether, we get:
I+L I+L  min{/,/}

X=> X=X > 1—iXi =
=1 I=1 i=max{1,/-L}

j+L  min{/,I} I—i Nid

SIS SR VD P VI
I=1 i=max{1,/-L} d=0v=1 "~
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At time t > L we have the following information
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De={X;i:i+1<t,ie{l,2,....1},1€{0,1,...,L}},

and our goal is to predict outstanding loss liabilities at time t

Di={Xi:i+1>tie{l,2,....1},1€{0,1,...,L}}.



Our goal
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o0 e Ff = { ,(d)‘ witd+k>tv<N; d}.

and further split into RBNS and IBNR as
FRBNS _ {X(f}lk; it+d+k>t v<Ng, i+d< t}
and

FIBNR _ {X(:i)lk; i+d+ k>t v<Ngy, i+d>t}.
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Figure: An example of regression tree from rpart.
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Regression trees are a type of decision tree methodology used
for predicting continuous variables. Regression trees were
originally introduced by (Breiman et al. [1984]), and they are a
non-linear and non-parametric technique and are highly
effective for capturing complex interactions and dependencies
between the predictor variables and the target variable.
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reserving A regression tree is constructed through a process of binary
flmn St recursive partitioning. Each branch represents the outcome of
the decision, and each leaf node represents a predicted value.
The objective is to minimize the variance within each subset,
thus ensuring that the resulting predictions are as accurate as
possible, i.e. our goal is to minimize SSE(T) = SN, (yi — 9)?,
where T is the regression tree that for a given pair of
covariates and targets (X;, y;) predicts the value y.
The predictions in leaf nodes are done by simply calculating
averages.




Regression trees - introduction

Bagging and
regression
trees in
individual

claims 3592
reserving 100%,
Jan Jano Type = 1,3,4,5,6
2749 17e+3
94% 6%
Type = 1,4,6 payment_0 < 1592
26e+3
1%

paymem 0 >= 6806

2244 4649 159+3 17e+3
74% 20% 5%

Figure: An example of regression tree from rpart.




Bootstrap aggregating

Bagging and
regression
trees in
individual
claims
reserving

Bootstrap aggregating (bagging), introduced by Breiman
(Breiman [1996]) is a simple algorithm based on averaging
multiple regression trees.

We have B bootstrapped datasets £, £2,..., LB, Upon the
datasets we build regression trees 71, 7>,...,7Tg. Then for
prediction we calculate average prediction among all B trees,

B
ie., % bg:l T(X).

Jan Janousek
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Out-of-bag error
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S data point was not used for training, i.e., = ={b € B;{ ¢ Tp}.
And we average the predictions to get an OOB estimate for &.

Jan Janousek

0O0B(¢) = ‘_‘ AGE
be=
Then E
S (00B(x) — y(x))?,
XGX*

where X* = {x € £;3b € B sit. x ¢ L>}.



Our goal
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tressin We build on the work of Wiithrich (Wiithrich [2018]) by not
claims only predicting claim frequency but also extending the
e framework to include modeling claim severity.

Our goal is to predict:
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min{t—i,D} N; g [/min{t—i—d,L—d}

IEDY > X
d=0 v=1

k=0

min{t—i,D} N q L—d

+ oy Y- Y XY 7]
d=0 v=1

k=t—i—d+1

where F; is the information available at time t.
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Let (Q,f, (.7-})?;6 ,IP) be a stochastic basis with sufficiently
rich and discrete filtration (]-“t)iié. Also let all processes
(N, d) d be (Ft)iJré—adapted for time t = i + d and

(X d|k)ldkv be (}"t) o L_adapted for time t = i + d + k.
Furthermore, let us assume the following:



Assumption - cont.;
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reserving @ the random variables (N 4); 4 and ( :d | k)/,d,k,v are
Jan Janousek independent for different accident years i € {1,2,...,/};

@ the processes (X( )| )k are independent for different
reporting delays de {1,2,..., D} and different claims
vel{l,2,...,Niqg};

@ The conditional distribution of X(d)| ke1 Biven Fipdig is

X,(‘;)| ko1 | Fitd+k ~ Pd+k (X,(:/(,)| k) ;

where x(d)| (isa realization of X(d)| P which is a
Firdsk-measurable vector of covariates of the claim
(i,d, k,v), and pgik : X — [0,+00) is some distribution.
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L is an S-dimensional vector

- (x

(v) !
X id| k(s ))se{l,Zv-vS}

id|k

= (X1, ), X%, (@, X, k(S))T cX.
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R The dataset was obtained from (Wang and Withrich [2022]).
fEm Do) It consists of 51,338 closed, 7,596 RBNS, and 2,436 IBNR
claims observed in years i € {1,2,...,10}. The generator also
generated claim payments for t > 10. Therefore, we can
compare our methods with the (generated) reality.

As all claims can be reopened, we decided to consider all claims
as RBNS.

We build bagging models to calibrate the probabilities p; for
l€{0,1,...,L—1}, where | = d + k and L =9 is the
maximal observed development delay.




Bagging and
regression
trees in
individual
claims
reserving

Jan Janousek

Application on data

The vector contains the following information:

x(5 + d)
x(5+d+1)

x(5+d+ k)
x(5+d+k+1)

type of the insurance claim (type)

age of the person insured (age)

weekday of the accident (weekday)

reporting delay (d)

payment at time i (only present if d = 0) ((X
payment at time i + 1 (only present if d < 1)

payment at time /i + d (Xd+0)
payment at time i + d + 1 (Xd+1)

payment at time i + d + k (Xd+k)
empty

empty
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Application on data

(a) Distribution of type among (b) Distribution of the age of per-
claims son injured

Figure: Basic data exploration.



Data exploration

Bagging and
regression
trees in
individual
claims
reserving

Accident years Accident weekdays

7000
|

8000
|

6000
L

Jan Janol

3000 4000 5000
L

4000 6000
L

2000
L

1000
L

Application on data

(a) Distribution of accident years (b) Distribution of accident week-
days

Figure: Basic data exploration.
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Training and
predicting

Prediction for RBNS
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Training and
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The first prediction
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Training and
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After the first prediction
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Training and
predicting

Learning to predict for second time
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Training and
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The second prediction
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Training and
predicting

Learning to predict for the last time
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Prediction for IBNR claims
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XIBNR N(CCL)E[ X(l)]

where N,.(ia) is the chain-ladder estimation of the cumulative
number of claims calculated from the reported claims and
IAE[/X,-(l)] is the expected value of the payment (i, d, k, 1) such
that d + k = / for a single claim (i, d, v), such that i +d > /
with accident year J.
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Next year's reserves
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Figure: blue — real value of payments, orange — bagging method, grey
dashed lines — 95% confidence interval, green dashed line-99.5%
quantile.



Next year's reserves
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Figure: blue — real value of payments, green — chain-ladder method,
red — regression tree method, orange — bagging method, grey dashed
lines — 95% confidence interval, green dashed line-99.5% quantile.
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Figure: blue — real value of payments, orange — bagging method, grey
dashed lines — 95% confidence interval.
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Figure: blue — real value of payments, green — chain-ladder method,
red — regression tree method, orange — bagging method, grey dashed
lines — 95% confidence interval.
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Summary statistics
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I next year's ultimate
reserving real: | 44,391,068 | 99,086,299
Jan Janousek mean: | 45,609,930 | 131,146,228
sd: 70,9815 | 16,920,947

maximum: | 48,386,506 | 232,476,955

99.5% quantile: | 47,470,514 | 188,363,958

97.5% quantile: | 47,038,289 | 171,620,400

75% quantile: | 46,083,806 | 140,646,058

median: | 45,599,231 | 127,951,440

25% quantile: | 45,111,226 | 118,884,735

2.5% quantile: | 44,275,804 | 106,433,734

minimum: | 43,024,020 | 94,354,990
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Thank you for your attention

Thank you for your attention!
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