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WHAT IS AN ECONOMIC SCENARIO GENERATOR (ESG)

ESG = tool for simulation of future evolution of macroeconomic and financial environment*

3,5

Typically, the simulation concerns:

« Real and nominal yield curves

« Equity indexes / investment fund returns
« Dividend return

* Credit spreads

« Inflation index (derived)

Each market variable modelled via specific random process.

Characteristics of many realizations of these processes are then investigated — usually thousands of scenarios.

*Although, Google’s results for “ESG” relates mainly to sustainability @
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OFF-TOPIC

Why did the economic scenario generator start focusing on ESG factors?

Because it realized it needed to incorporate a little "environmental humor" to balance
out all those market fluctuations! ©

KB
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RISK-NEUTRAL VS REAL-WORLD SCENARIOS

Two basic setups of ESG:

Risk-neutral Real-world

Objective / function Market-consistent valuation To generate realistic projection of assets
and liabilities
Discount rate All assets expected to earn risk-free rate  Riskier assets earn higher expected risk-
adjusted return (risk-free rate plus risk
premium)
Usage Replicating market prices using ALM, risk management applications:
simulation, valuation of options and assessing regulatory capital, “what-if”
derivatives, asset/liability pricing scenarios, value at risk

Real-world scenarios can be used for valuation (in theory) — difference in the used probability measure, usage of
deflators (stochastic discount factors):

V =E[d;X] = EP[D(T)X],

where V is the present value of future cashflow X at time T, Q means risk-neutral probability measure, P means
real-world measure, D() is the deflator and d is risk-free discount rate

KB
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RISK-NEUTRAL WORLD IN MORE DETAIL

Assumptions:

Utility

« Market participants do not require compensation for taking on risk.

* No arbitrage opportunities exist in the market

Key Concepts:

 Future cash flows discounted at the risk-free rate

* Probabilities of future events adjusted to reflect risk-neutral probabilities.
« Under the risk-neutral measure, the expected discounted value of an asset equals its current price.
Application:

« Commonly used in pricing derivatives such as options, where future payoffs are uncertain.

* Risk premium does not need to be considered in the valuation process.

Advantage:

« Simplifies calculations by assuming a single risk-free rate for discounting.

Conclusion: We can assume risk-neutral world for pricing (valuation) of derivatives such as options with the
valid result in real-world which is not risk-neutral.

Image: adapted from math.stackexchange.com
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~1 Pojistovna SCENARIO GENERATOR| 7



http://math.stackexchange.com/questions/1847497/risk-seeking-utility

APPLICATION IN INSURANCE COMPANIES

Valuation of options and guarantees in saving life insurance policies.

Option embedded in an insurance policy -> client behavior depends on certain (e.g. market) factors

BEL = PVFCFSTOCH = PYFCF‘E + TVFOG
BEL: Best estimate of liabilities
PVFCFSTOCH: pverage of present values of future cash flows using stochastic scenarios
PVFECFCE: Present value of future cash flows under certainty equivalent (deterministic) scenario

TVFOG: Time value of financial options and guarantees embedded in insurance contracts

Example of guarantees:

« Technical interest rate, guaranteed rate, minimum guaranteed death benefit

Examples of options:

«  Profit share (to discretion of the company), surrender option (possibility to lapse), partial withdrawal
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MONTE CARLO APPLICATION

*  Monte Carlo simulations = sampling from distributions of uncertain parts of the model
* One scenario = one simulated market future = a path for the behavior of assets and liabilities

* Determination of TVFOG: by taking average of all discounted scenarios
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MODEL FROM
PRACTICE
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SCENARIO GENERATOR EXAMPLE

Set up of a scenario generator may look like this:

Economic variable Model used

Nominal interest rates Libor Market Model Plus (LMM+)

Real interested rates Vasicek model with two factors

Equity index (e.g. Eurostoxx 50) Stochastic Volatility Jump Diffusion (SVID)
Real estate fund index Fixed Volatility Model (Black-Scholes)
Dividend index Vasicek (one factor)

Inflation index Derived from nominal and real interest rate

Many other models exist for the individual economic variables (less or more complex).
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SCENARIO GENERATOR EXAMPLE

4 N 4 N
« Market data + Assets/liabilities
. i interactions
i ri?r:zesterr)igzes « Model ?alibrations . Cash-flow generation . Best est!mate
« Expert judgements « Management actions calculation
« Definition of » SCR calculation
stresses
- /

KB

~1 Pojistovna SCENARIO GENERATOR | 12



ORDINARY (STOCHASTIC) DIFFERENTIAL EQUATION

Common form of ESG:

(next period value) = (current value) + (expected drift) + (random shock)
Expected drift ... calibrated to the central expectation of the change in value

Random shock ... calibrated to volatility in value

Model description for variable X in the form of stochastic differential equation:
dX(t) = p(X(®), t)dt + a(X(t), t)dW (¢),

where:

u(X(t),t) ... drift coefficient

o(X(t),t) ... volatility coefficient

W (t) ... Wiener process (independent and normally distributed increments)
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INTEREST RATE MODELS

Basic types (with examples):

Short rate models

¢ One-factor models: Vasicek, CIR

* Multi-factor models: Hull-White
Forward rate models

*  HJM model

Market models

« LIBOR Market model (+ variations)

« Swap Market model

KB
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LIBOR MARKET MODEL (LMM) FOR YIELD CURVES

« Originally called ,BGM“ model (names of authors)

« LIBOR in the title does not refer specifically to LIBOR, but it can indicate another interbank rate, for example
EURIBOR or PRIBOR

« Belongs to so called ,market models” class of models*
«  LMM model = set of stochastic differential equations for forward rates F; quoted in the market

» Modelling of entire forward curve

Valuations based on LMM have to be done by means of Monte Carlo simulations

*https://www.columbia.edu/~mh2078/market_models.pdf
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LIBOR MARKET MODEL (LMM) FOR YIELD CURVES

RFR rates YE 2023
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LIBOR MARKET MODEL (LMM) FOR YIELD CURVES

Assume given tenor structure (equally spaced with intervals §):

0=T0<T1<”‘<TN
Let F;(t) be forward rate in the time t over period [T;_4, T;].
For example, if we consider model for 40 years with monthly steps = N = 40 X 12 = 480

Relationship between forward (LIBOR) rates and the corresponding zero-coupon bond prices is:

_ 1 (P(tTiy)
F@) = 6( P(t,T)) 1)’

where P(t,T ) denotes zero-coupon bond price at time t with maturity T (ZCB pays 1 unit of currency at time T)

In general LMM model:

- Each forward F; is modelled as process F;(t).
- Dynamics of the forward process driven by an N-dimensional correlated Wiener process W, (t), ..., Wy (t)
* Let p;; be correlation coefficient between W;(t) and W;(t):

dw;(£)dW;(t) = p;j(t)dt

KB
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LIBOR MARKET MODEL (LMM) FOR YIELD CURVES

Lognormal LIBOR Market model:
dFi(t) = ,ul-(t)Fi(t)dt + O'i(t)Fi(t)dWi(t) [ = 1, e, N

That is, we model the set of equations:
dF; (t) = p(OF (t)dt + o1 (O F, () dW;(t)
dF,(t) = u () F,(t)dt + o, () F, () dW, ()

dFy(t) = uy () Fy (@) dt + oy () Fy () dWy (£)

Process F;(t) gets killed (expires) at t = T; as the forward rate fixes.

KB
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LIBOR MARKET MODEL (LMM) FOR YIELD CURVES

It can be shown that the drift of risk-neutral process can be written as:

6F;(t)o;(t)o; (1) py;(t)

1 +5F}-(t) dt + F;(t)o;(t)dW;(t) i=1,..,N,

dF@® =FO| )

j=m(t)

where m(t) is the index of the first forward rate that has not expired after t.

=>whole model completely defined if we know the volatility functions o; and the correlation matrix p;;.

Modelling of N Brownian motions practically not feasible, instead process driven by small number of
independent Brownian motions:

dr(t)
F(t)

D
drift + z cl(t)dz(t) i=1,..,N,
q=1

where D € {1,2,3,4} and Z? are independent Brownian motions. .factors’ reduction
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LIBOR MARKET MODEL (LMM) FOR YIELD CURVES

By setting D = 2 and assuming volatility components in the form of aq(t) - v(t)a we can write:

dF;(t)
Fi(t)

— drift +v(t)z cdz9(t) i=1,..,N.

Model implemented by applying Itd’s lemma on log(F;(Ty,1)) - model time step equal to §:

...discretization

Fi(Ty41)

i 8F j(Ti)v?*(Ty) To= il
= F(Ty)exp | Xick+1 d 1+6F](Tk) k0 k5——172(Tk) Yes10i 5+U(Tk)(01 Vo + i Voe,)),

&1, & are independent normal variables

Note: The process for F;(t) cancels at t = T; since the i-th forward settles at T;. Duration of the modelled curve
decreases by § over each model time-step.
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LIBOR MARKET MODEL (LMM) FOR YIELD CURVES

What’s important: Volatility and correlation structure of the model is characterized by volatility factors aiq and
volatility scaling factor v(t).

Parameters of the model to be calibrated:

F;(0) ... initial forward curve
ail, aiz... volatility factors for each time interval, i = 1, ..., N

v(t) ... volatility scaling factor (deterministic function)
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FROM LMM TO LMM+

Moving to even more complex model:

...by introducing a displacement parameter 6 and a stochastic variance v(t)

Displacement:

« Allows negative rates
* Reduces occurrence of exploding rates

* Introduces more volatility when rates are low

Stochastic volatility:

« More realistic description of interest rate volatility

KB
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FROM LMM TO LMM+

LMM+ risk neutral model:

R =i+ Y SO =1

with the drift in the form of

S(Fr()+6) 2 q_q
v (Zfom s Za=1 01 )

v(t) is an additional random process driven by Cox-Ingersoll-Ross (CIR) model:

dv(t) = a(b — v(t))dt + e/ v(t)dW (t)

Correlation structure between process v(t) and forward rate depends further on a correlation parameter p

KB
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LMM+

Parameters of the model to be calibrated:

F;(0) ... initial forward curve

6 ... displacement factor

o', af ... volatility factors for each time interval [T;_;,T;],i = 1, ..., N
v(0) ... initial value of volatility scaling factor

p ... correlation parameter

a, b, € ... factors of the CIR model

Calibration = Calculation of initial parameters of the model to be consistent with the current market situation

(numerical methods)

= we want that calculated values of bonds or swaptions from the model agree on the current prices.
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LMM+ MARKET CONSISTENT CALIBRATION

How calibration of LMM+ can look like :

1.

A A

Initial forward curve F;(0) - derived from government bond prices or swap rates (e.g., by Nelson-Siegel
method)

Displacement 0 — set to a reasonable value

Factors g}, o7- calibrated to empirical correlations estimated from historical forward rates
Market swaption prices and implied volatilities — estimated from market data

Initial value of volatility scaling factor v(0) - reasonably set

Other parameters p, a, b, € fitted numerically so that volatilities calculated from the model correspond to

the market implied volatilities (optimization algorithms) o
...fitting process

KB
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SWAPTION IMPLIED VOLATILITIES EXAMPLE

Implied volatilities

Duration of swaption

Interal data

KB
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SWAPTION IMPLIED VOLATILITIES EXAMPLE

Market volatilities 2023
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Duration of swaption
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SWAPTION IMPLIED VOLATILITIES EXAMPLE

Projected 5-year nominal rate 2023
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SWAPTION IMPLIED VOLATILITIES EXAMPLE

Projected 5-year nominal rate 2020

£
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REAL INTEREST RATE - TWO FACTOR VASICEK

Example of short-rate model — specified by stochastic behavior of the short-term interest rate (and other
stochastic variable potentially)
dr(t) = ar(m(t) — r(t))dt + o,.dW,.(t)

dm(t) = ap(u — m(t))dt + o dW, (1),

where:
m(t) ... process of mean-reversion level
ay, Ay, Or, Om, 1 are parameters of the model

W,. and W,,, are Brownian motions

Under these assumptions, distribution of (t) is normal ... allowing negative real interest rates.

KB
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REAL INTEREST RATE - TWO FACTOR VASICEK

Entire term structure can be calculated. From the risk-neutral price of an inflation-linked zero-coupon bond:

P(t,T)=E [exp (— ftTr(t)dt)]

This expression can be calculated analytically.

Calibration of the model:
r(0),m(0) ... initial values, derived from current short and long term rates and inflation forecast

Ay, Ay, Or, Om, U ... NUMerical calculation so that modelled bond prices correspond to the market ones

KB
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INFLATION

Inflation derived from the nominal and real interest-rate curves.

The inflation rate as the difference between the nominal short rate and the average real short rate:

Rate(t) = exp (Nominal. ShortRate(t — At) — % (Real. ShortRate(t — At) + Real.ShortRate (t))) -1

KB
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SVJD MODEL FOR EQUITIES

SVID = Stochastic volatility jump diffusion model
« Combination of the stochastic volatility Heston model and the Merton jumps model
« Sudden large movements (“jumps”) observed in practice

* Occurrence of jumps described by a Poisson random variable

Monthy returns of a stock fund (1000 scenarios)
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SVJD MODEL FOR EQUITIES

Risk neutral model:

BO = (r(t) — AD)dt + Jv(©)dW,(t) + J — AN (t),

S(6)

where variance v(t) is a random process described by CIR model:

dv(t) = a(b — v(t))dt + &/ v(t)dW,(¢)

W, and W, are correlated Wiener processes.

N(t) ... random number of jumps on the interval [0, t], i.e. Poisson process: N(t) ~ Poisson(At)

J ~ LogNormal(u,, 012) ,ie.In()) ~ N(,u],ajz) ... jumps are log-normally distributed

o2
2

ﬁ=exp(,u]+—])—1=E[[]—1
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SVJD MODEL FOR EQUITIES

SVID model
« Stochastic volatility

* Impact of price jumps via lognormal process + number of occurrences of jumps by a Poisson process

Calibration example

Calibration of the parameters of the SVJD model based on implied volatilities from options for the currency of
the equity index.

... optimization problem to fit the model option prices to those observed on the market

KB
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CHARACTERISTICS ESG MUST DEAL WITH

Shock generation framework _
RandomNumber; ~ Uniform (0,1)

* For Monte Carlo method

« Pseudo-random number generation

« Specification of probability measure under which stochastic model dynamic is simulated (user can either
choose risk-neutral or real-world)

Dependence structure of variables modelled

« Choice of a copula used for dependence structure — e.g. Gaussian copula or T-copula

Calibration of correlation (between asset classes)

e Historical correlations or Monte Carlo simulation

KB
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VALIDATION OF
SCENARIOS

Examples
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VALIDATIONS

As the number of simulation scenarios is finite (and numerical approximations used), it is important to test the
desired property of the generated scenarios for both

* market-consistency, and

* risk-neutrality

Inputs to validations: generated scenarios
Goal:
« To check that calculated prices and yields from generated scenarios agree (on average) to calibration targets

« To check that the present value of each asset class modelled equals the initial value (martingale property)

KB
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INITIAL YIELD CURVE

= test that model implied yield curve agrees on the initial yield curve
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ZERO-COUPON BONDS YIELDS

= validates that the calculated zero-coupon yields corresponds to the zero-coupon yields from the initial curve
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MARTINGALE TEST

« To check the present value of each asset class modelled equals the initial value (martingale property).

« To validate whether the number of scenarios is sufficient, i.e. the sampling error is sufficiently small, we can
test that each asset earns the same as the cash

« Let S be total return index of an asset, C total cash return. It should hold for any projection time T

E [%5@)] =1

Calculation of mean (sample average) across all scenarios for each projection time-step
=> construction of 95% confidence intervals as:
(Mean £ 1.96 standard error)
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EQUITY PRICES

To check that the present value of each asset class modelled equals the initial value (martingale property)

Base
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1,00 T
-~
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0,90
0,85
0,80
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
— G e—FExpected
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INTEREST RATE VOLATILITIES

To validate volatilities implied by the ESG output

« Calculate swaption prices from generated scenarios — estimation based on the mean from the scenarios

=average discounted swaption payoff

« Calculate implied volatilities from the estimated swaption prices — e.g. using Black-Scholes or Bachelier
formula for swaption

« Compare the volatilities implied from the scenarios to volatilities implied from the market prices of
swaptions

KB
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SWAPTION IMPLIED VOLATILITIES EXAMPLE

Example of volatilities estimated from model to market implied volatilities (5Y swaption):
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CONVERGENCE TEST

» Alternative expression of martingale test

« Validates convergence of asset returns to the martingale property over the number of scenarios
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CZECH MARKET

KB

~1 PojiStovna




MARKET RESEARCH

« 8biggestinsurance companies that uses ESG on Czech market were surveyed

* However, only 4 responded => probably no generalization should be applied ©

1. Are ESG scenarios provided to you from the group, or do you use ESG internally?
- 1internally, 3 have RN scenarios from the group (of which 1 generates RW scenarios internally)
2. How many scenarios do you use?
- All 1000 scenarios for BEL
3. What model do you use for nominal rates simulation?
2 LMM+ model, 1 LMM model, 1 Hull-White model + Gaussian two factor model
4. Do you use real-world scenarios?
2 don’t
1 for ALM

1 only as single scenarios (e.g. for VNB, planning, LAT)
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