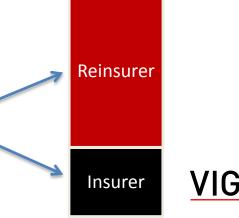
November 18th , 2016

EXPOSURE MODELS IN REINSURANCE

Exposure Models in Reinsurance : Table of Contents

- Motivation
- Construction and Interpretation of Exposure Curves
- Transition Methods
- Types of Exposure Curves
- MBBEFD Distributions
- Pricing of Reinsurance Contracts with Exposure Curves
- Increased Limit Factors
- Summary & Bibliography

Exposure Models in Reinsurance


Motivation

Motivation

- Pricing of a Non-Proportional per risk reinsurance programs
 - it should not be based only on historical claims experience
 - current exposure should also be considered
 - shift in business movements in the portfolio volumes
 - in case of insufficient claim history it is indispensable
- Historically, the need for a fast and accurate pricing process
- Aim: distribution of premium between primary insurer and reinsurer for each band/risk

Gross Risk Profile							
Risk Profile Name	Band SI/PML		Nr. Of Risks	Total SI/PML	Premium		
Fire - Property Small Risks	0	500 000	81 847	4 073 604 954	4 515 515		
Fire - Property Small Risks	500 000	1 000 000	1 566	1 118 702 402	984 372		
Fire - Property Small Risks	1 000 000	2 500 000	1 246	1 934 995 601	1 338 648		
Fire - Property Small Risks	2 500 000	5 000 000	291	946 439 987	595 425		
Fire - Property Small Risks	5 000 000	10 000 000	73	484 292 205	863 510		
Fire - Property Small Risks	10 000 000	20 000 000	39	527 940 298	729 683		
Fire - Property Small Risks	20 000 000	30 000 000	16	410 949 649	376 672		

Motivation

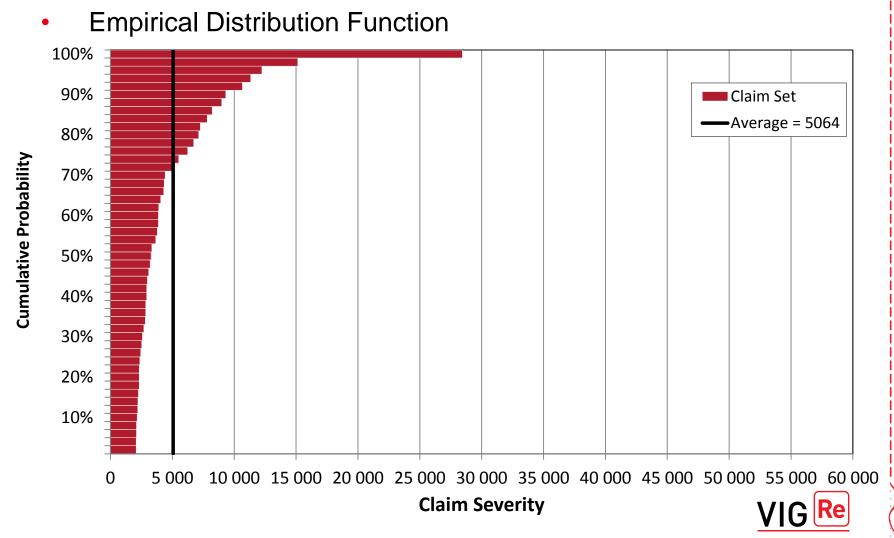
Exposure Pricing

- it uses **Risk Profiles** with the current available portfolio information
 - it contains homogeneous risk types
 - all risks of the same size (Sum Insured, Probable Maximum Loss, Estimated Maximum Loss) are grouped together in **Risk Bands**
 - Total Exposure (SI, PML, EML), Total Premium as well as Number of Risks in each band are known
- Application of a single **claim distribution** per risk band
 - Problem is that claim distribution is not known
- application of Exposure Curves

Motivation

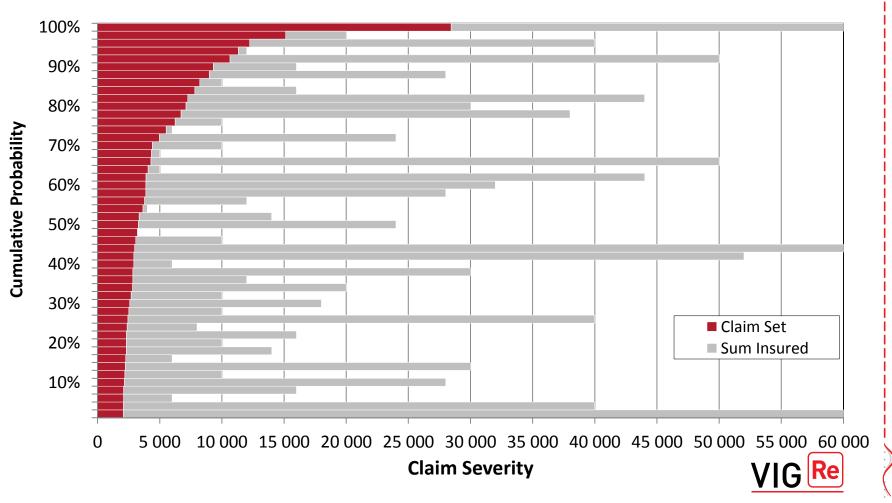
Exposure Curves

- allow direct sharing of risk premium between insurer and reinsurer
- reinsurance risk premium is a function of the deductible
- are usually in a tabular form
- constructed from claim history of large homogeneous portfolios

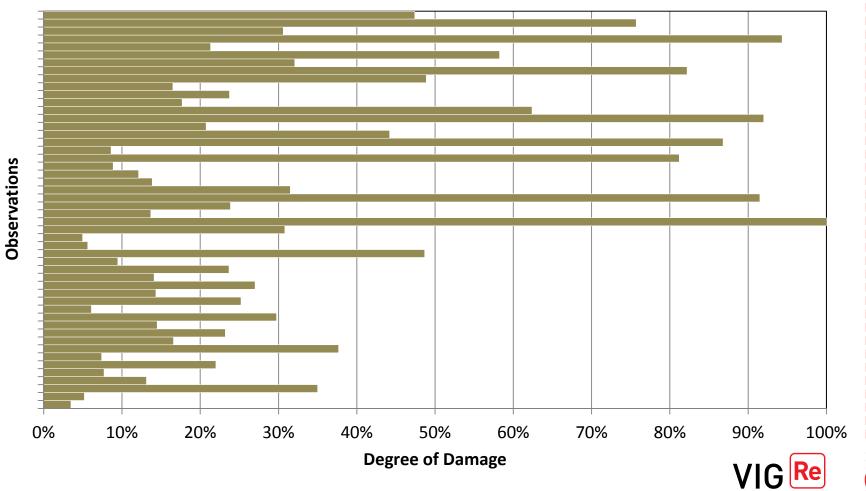


Exposure Models in Reinsurance

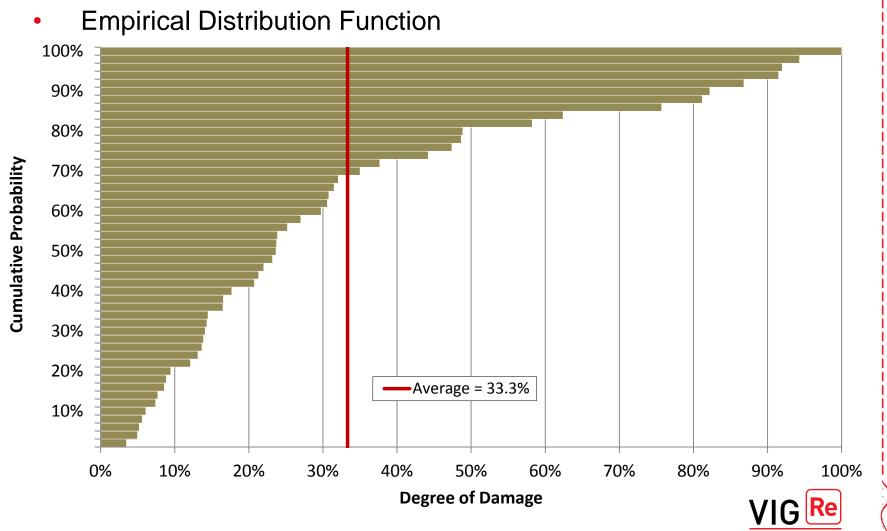
Construction and Interpretation of Exposure Curves



Severity Distribution of Claims

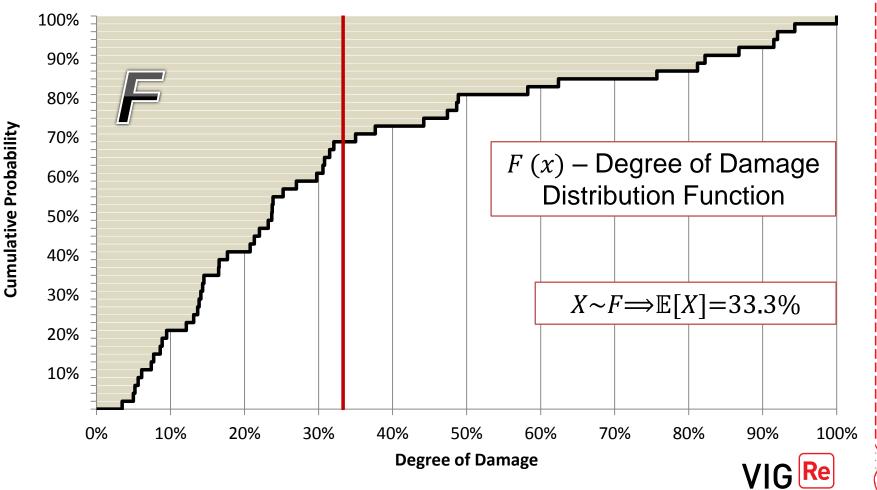

Severity Distribution of Claims

Empirical Distribution Function with Sum Insured

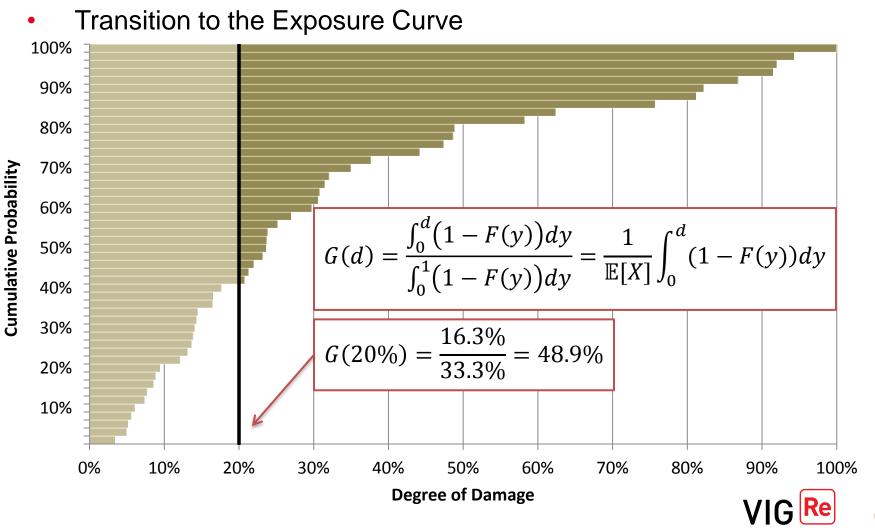


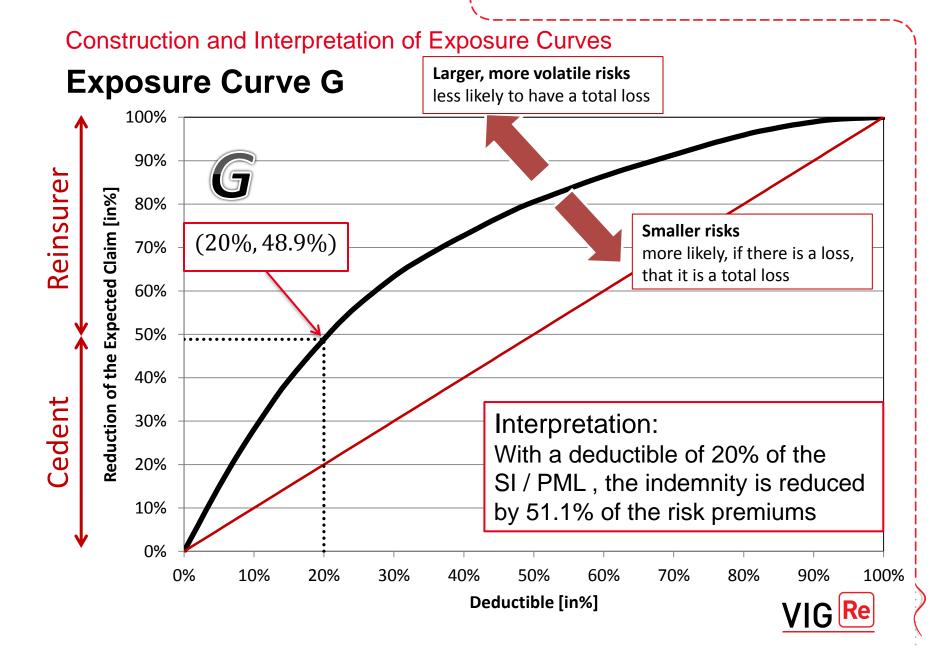
Degree of Damage

Ratio of Claim Severity and Sum Insured



Degree of Damage Distribution




Degree of Damage Distribution F

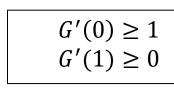
Empirical Distribution Function

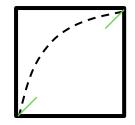
Degree of Damage Distribution

Properties of the Exposure Curve G

$$G(d) = \frac{\int_0^d (1 - F(y)) dy}{\int_0^1 (1 - F(y)) dy} = \frac{1}{\mathbb{E}[X]} \underbrace{\int_0^d (1 - F(y)) dy}_{-} = \frac{LAS(d)}{LAS(1)}$$

LAS(d) - Limited Average Severity

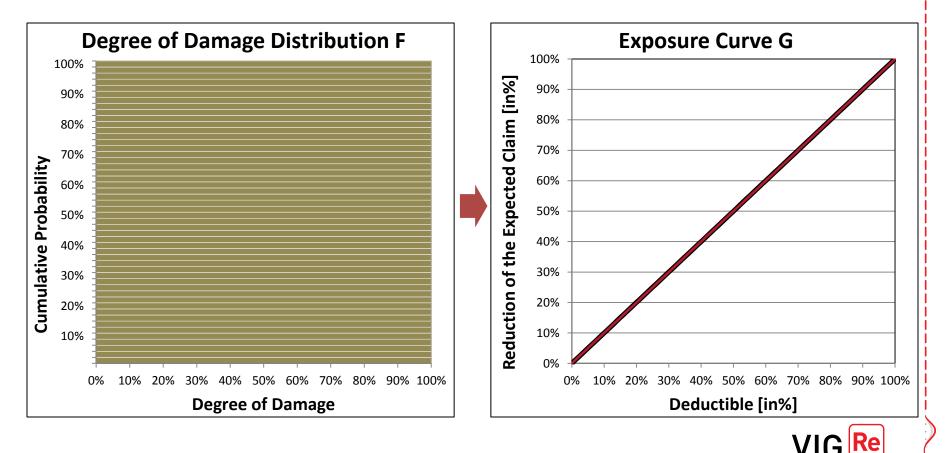

- By definition it holds that:


 - G(0) = 0• G(1) = 1
- Because

•
$$G'(d) = \frac{1 - F(d)}{\mathbb{E}[X]} \ge 0$$

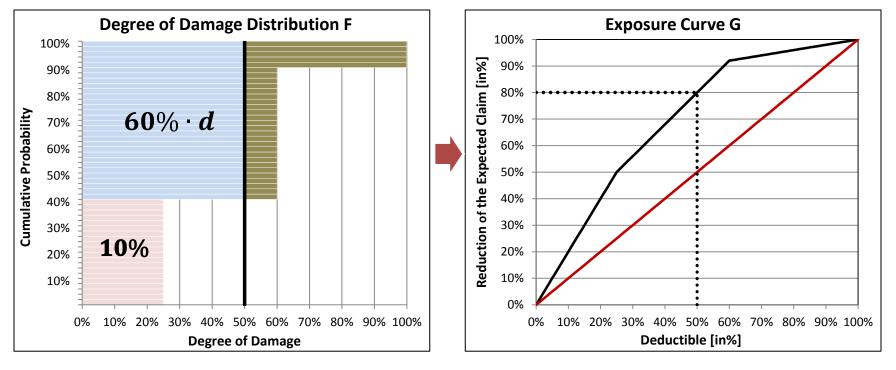
• and
$$G''(d) = -\frac{F'(d)}{\mathbb{E}[X]} = -\frac{f(d)}{\mathbb{E}[X]} \le 0$$

G is increasing and concave in [0, 1]



Example 1: Total damages only

- Portfolio A produces only total damages
- Then it is obvious that G(d) = d

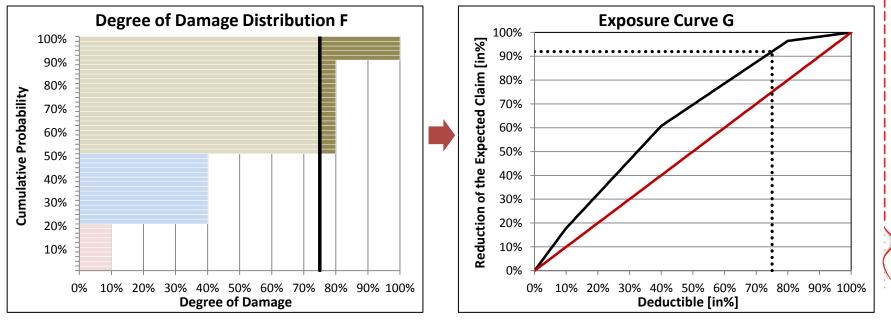


Example 2

- Portfolio B produces
 - 10% of claims that are total damages,
 - 50% of claims are 60% partial damages,
 - and 40% of claims are 25% partial damages

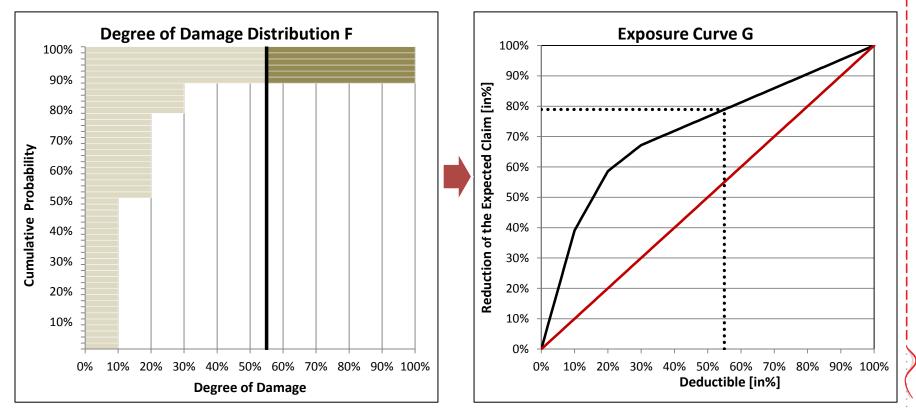
• Then

$$G(d) = \frac{1}{50\%} \cdot \begin{cases} d, & 0\% \le d \le 25\% \\ 10\% + 60\% \cdot d, & 25\% \le d \le 60\% \\ 10\% + 36\% + 10\% \cdot d, & 60\% \le d \le 100\% \end{cases}$$


Example 3

- Portfolio C produces
 - 10% of claims that are total damages,
 - 40% of claims are 80% partial damages,
 - 30% of claims are 40% partial damages,
 - and 20% of claims are 10% partial damages

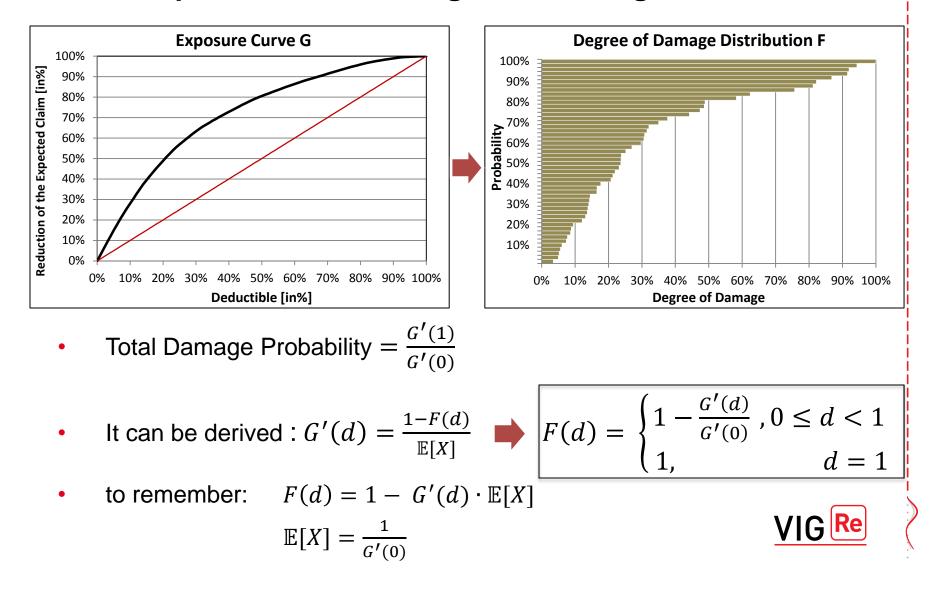
• Then


$$G(d) = \frac{1}{56\%} \cdot \begin{cases} d, \\ 2\% + 80\% \cdot d, \\ 2\% + 12\% + 50\% \cdot d, \\ 2\% + 12\% + 32\% + 10\% \cdot d, \end{cases}$$

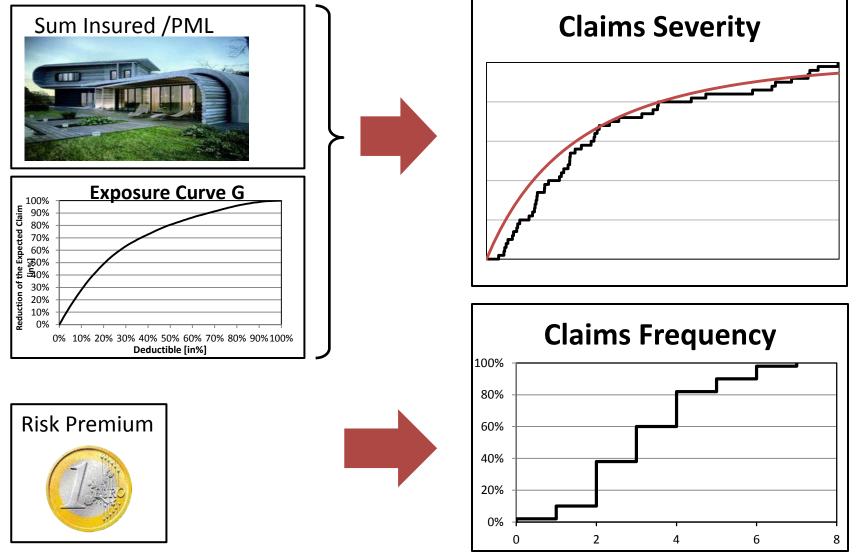
 $0\% \le d \le 10\%$ $10\% \le d \le 40\%$ $40\% \le d \le 80\%$ $80\% \le d \le 100\%$

Example 4

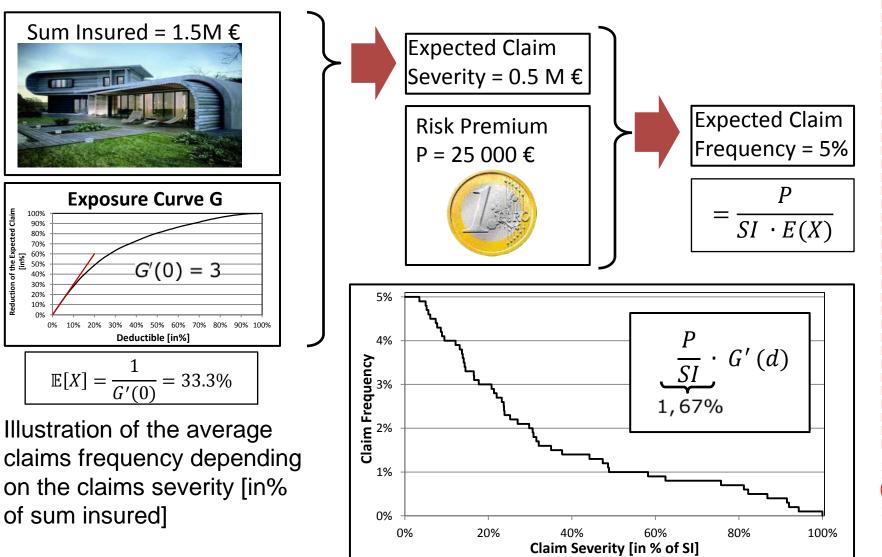
- Portfolio D produces
 - 10% of claims that are total damages,
 - 10% of claims are 30% partial damages,
 - 30% of claims are 20% partial damages,
 - and 50% of claims are 10% partial damages

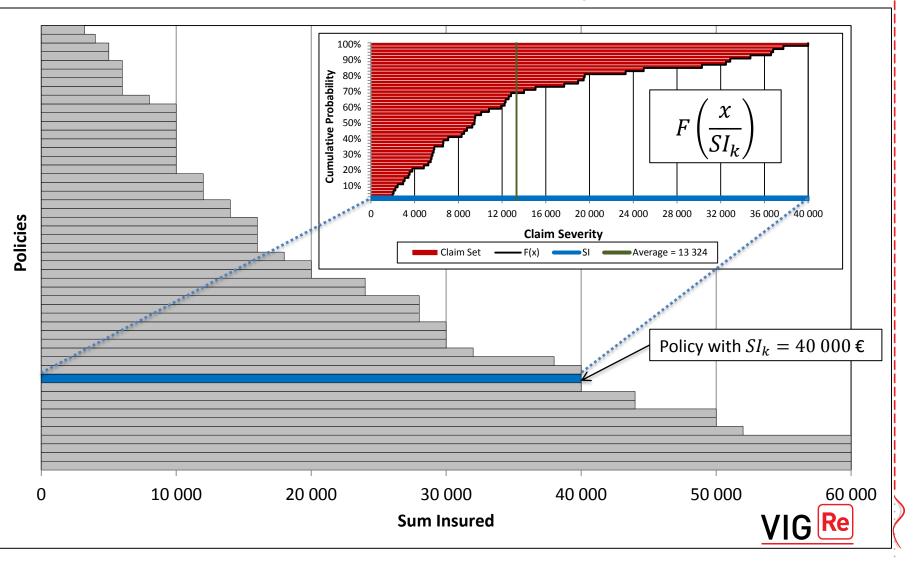


Exposure Models in Reinsurance


Transition Methods

Transition Methods From Exposure Curve to Degree of Damage Distribution


Transition Methods From Exposure Curve to Claim Frequency and Severity Distribution


Transition Methods From Exposure Curve to Claim Frequency

Example

Reduction of the Expected Claim [in%]

Transition Methods From Exposure Curve to Claim Severity Distribution

Transition Methods Overview - Claim Frequency and Severity Distribution

P

Policies/ Bands	SI / PML	Premium	Claim Frequency (at x)	Claim Severity
#1	SI ₁	P_1	$\lambda_1(x) = \frac{P_1}{SI_1} \cdot G'\left(\frac{x}{SI_1}\right)$	$F\left(\frac{x}{SI_1}\right)$
#2	SI ₂	P_2	$\lambda_2(x) = \frac{P_2}{SI_2} \cdot G'\left(\frac{x}{SI_2}\right)$	$F\left(\frac{x}{SI_2}\right)$
 #k	 SI _k	 P _k	$\lambda_k(x) = \frac{P_k}{SI_k} \cdot G'\left(\frac{x}{SI_k}\right)$	$F\left(\frac{x}{SI_k}\right)$
#n	SI _n	P_n	$\lambda_n(x) = \frac{P_n}{n} \cdot G'\left(\frac{x}{SI_n}\right)$	$F\left(\frac{x}{SI_n}\right)$
	llective Moo oisson($\lambda(0)$		$\lambda(x) = \sum_{k=1}^{n} \lambda_k(x)$	$Y(x) = 1 - \frac{\lambda(x)}{\lambda(0)}$

Exposure Models in Reinsurance

Types of Exposure Curves

- Lloyds Curves
 - Does not vary by amount of insurance or occupancy class
 - Underlying unknown (marine losses? WWII Fires?)

• Salzmann (Personal Property)

- Based on actual Homeowners data (INA, 1960)
- Varies by Construction/Protection Class
- Building losses only and Fire losses only
- Salzmann recommends not using them, only meant as an example
- Reinsurer Curves (Munich, Skandia, etc.)
- Ludwig Curves (Personal and Commercial)
 - Based on actual Homeowners and Commercial data, (based on relatively small portfolio of Hartford Insurance Group)
 - Includes all property coverages and perils (also 1989 hurricane Hugo losses)
 - Old data: 1984 1988

- ISO's PSOLD (Insurance Services Office)
 - Recent Data updated every 2 years
 - Varies by amount of insurance, occupancy class, state, coverage, and peril
 - Continuous Distribution (no need for Interpolation)
 - Based on ISO data only
 - US specific (see <u>White [2005]</u>)

Swiss Re curves

- also called Gasser curves (developed by Peter Gasser)
- based on the data of "Fire statistics of the Swiss Association of Cantonal Fire Insurance Institutions" for the years 1959-1967.
- widely used by European reinsurers

MBBEFD curves

new parametrisation of all curves above

Curve Selection

- Whether a lot of total losses occur, or partial and small losses are the rule, depends on various factors
- The decisive factors are (see <u>Guggisberg [2004]</u>)

Perils covered

- o fire causes more damage to an individual building than a windstorm
- while gas explosion can completely destroy a house, lightning strikes generally causes only partial damage
- earthquakes cause minor to devastating damage to buildings

Class of risk

 gunpowder factories are more likely to suffer total losses than food processing plants

Class of Risk	Average Degree of Damage	
Residential Building	1.9%	
Administration Building	0.5%	
Farm Building	4.9%	
Industrial Building	4.4%	

Curve Selection

Size of risk

- fire often causes only partial damage to a large building, whereas small buildings are more likely to suffer total destruction in the event of fire in terms of Sum Insured or PML
- the larger a risk, the smaller the PML usually is as a percentage of the SI

Fire protection measures

- has a considerable influence on the shape of loss distribution function
- make it possible to stop fires at an earlier stage total overall loss is smaller and the share of minor losses increases

• Summary:

Peril/Type	Curve tends towards the diagonal	Curve runs in the middle area	Curve runs in the outer area
	Risk with poor fire protection	Risks with average fire protection	Risks with above average fire protection
Fire	Personal lines	Commercial lines	Industrial lines
	Farm building	Industrial building	Administrative building
Windstorm		Radio tower	Office building
Hurricane	Radio tower	Office building	

Exposure Models in Reinsurance

MBBEFD Distributions

Background

- In general **exposure curves** are given in tabular form
- Problems:
 - limited number of curves available
 - piecewise linear functions
 - do not catch slight changes in reinsurance program
 - only conditionally suitable for the calculation of the number of claims
- Aim:
 - replace table values with function
 - For exposure curves this means that piecewise linear function becomes a continuous function

Background

- the abbreviation stands for Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac
- curves from Physics used in the field of Statistical Mechanics
- suitable for damage curve modeling in property insurance (see <u>Bernegger [1997]</u>)
 - Continuous distributions
 - described by two parameters : $b \ge 0$ and $g \ge 1$
 - Swiss Re Y-Exposure Curves with a single parameter *c* are the special case of MBBEFD curves
- MBBEFD curves are common in Europe
 - Iess common in North America

MBBEFD Exposure Curves

• Exposure Curve for normalized retention $m \in [0; 1]$ is defined as

$$G_{b,g}(m) = \begin{cases} m, & g = 1 \lor b = 0\\ \frac{\ln[1+(g-1)m]}{\ln[g]}, & b = 1 \land g > 1\\ \frac{1-b^m}{1-b}, & bg = 1 \land g > 1\\ \frac{\ln\left[\frac{(g-1)b+(1-gb)b^m}{1-b}\right]}{\ln[gb]}, & b > 0 \land b \neq 1 \land bg \neq 1 \land g > 1 \end{cases}$$

- case bg < 1 corresponds to **MB**, bg = 1 to **BE** and bg > 1 to **FD** distribution
- Interpretation:

•
$$g = \frac{1}{Probability of Total Loss} = \frac{G'(0)}{G'(1)}$$

b has no direct interpretation

MBBEFD Degree of Damage Distribution Function

 corresponding degree of damage random variable X defined on interval [0; 1] has CDF

$$F_{b,g}(x) \begin{cases} 1, & x = 1 \\ 0, & x < 1 \land (g = 1 \lor b = 0) \\ 1 - \frac{1}{1 + (g - 1)x}, & x < 1 \land b = 1 \land g > 1 \\ 1 - b^{x}, & x < 1 \land bg = 1 \land g > 1 \\ 1 - \frac{1 - b}{(g - 1)b^{1 - x} + (1 - gb)}, x < 1 \land b > 0 \land b \neq 1 \land bg \neq 1 \land g > 1 \end{cases}$$

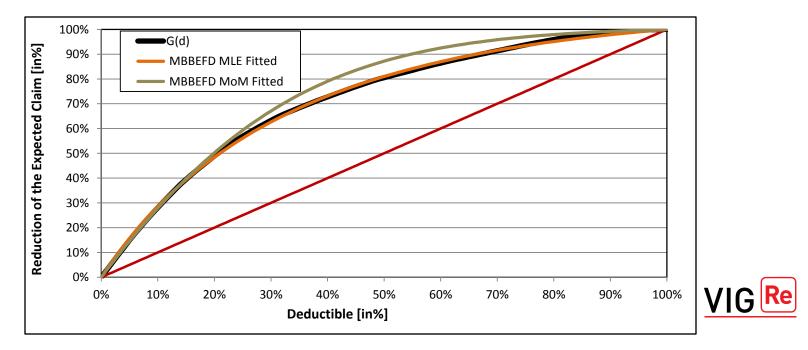
MBBEFD Degree of Damage Density Function

• Because of the finite probability $\frac{1}{g}$ for a total loss, the density function f(x) = F'(x) is defined only on the interval [0; 1)

$$f_{b,g}(x) = \begin{cases} 0, & g = 1 \lor b = 0 \\ \frac{(g-1)}{(1+(g-1)x)^2}, & b = 1 \land g > 1 \\ -\ln[b]b^x, & bg = 1 \land g > 1 \\ \frac{(b-1)(g-1)\ln[b]b^{1-x}}{((g-1)b^{1-x}+(1-gb))^2}, & b > 0 \land b \neq 1 \land bg \neq 1 \land g > 1 \end{cases}$$

MBBEFD Mean Degree of Damage

$$\mathbb{E}(X) = \begin{cases} 1, & g = 1 \lor b = 0 \\ \frac{\ln[g]}{g - 1}, & b = 1 \land g > 1 \\ \frac{b - 1}{\ln[b]} = \frac{g - 1}{\ln[g]g}, & bg = 1 \land g > 1 \\ \frac{\ln[gb](1 - b)}{\ln[b](1 - gb)}, & b > 0 \land b \neq 1 \land bg \neq 1 \land g > 1 \end{cases}$$

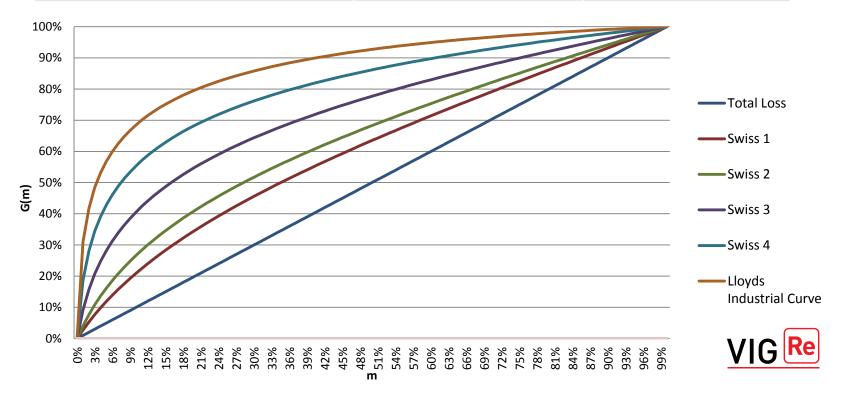


Parameters Estimation

Method of Moments

•
$$g = \frac{1}{Probability of Total Loss} = \frac{G'(0)}{G'(1)}$$

- b can be derived iteratively from equation $\mathbb{E}[X] = \frac{\ln(gb)(1-b)}{\ln(b)(1-gb)}$
- Mean Least Squares (R package: see <u>Dutang et al. [2016]</u>


- Swiss Re *Y_c* Exposure Curves are very common among non-proportional underwriters
- parameter c = 0, 1.5, 2, 3, 4 denotes the concavity of the curve
 - c = 0 is the total loss (diagonal)
 - the higher *c* the curve becomes more concave
- *c* is a single parameter for defining the MBBEFD parameters *b* and *g*:

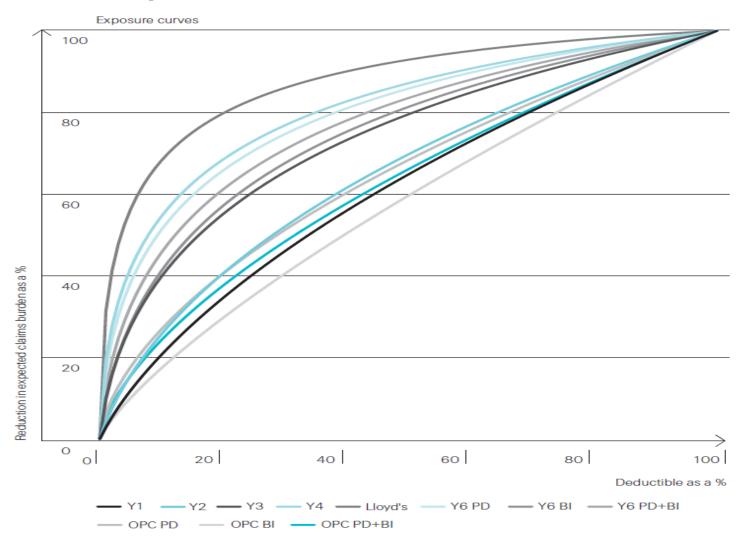
$$b_c = b(c) = \exp[3.1 - 0.15 (1 + c)c]$$

$$g_c = g(c) = \exp[(0.78 + 0.12c)c]$$

Risk Group	Building Sum Insured from	Building Sum Insured to
1. Personal lines	200 000 CHF	400 000 CHF
2. Commercial lines (small scale)	400 000 CHF	1 000 000 CHF
3. Commercial lines (medium scale)	1 000 000 CHF	2 000 000 CHF
4. Industrial lines and large commercial	over 2 000 000 CHF	-

- big industrial companies insure their risks with captives
- many small losses are not longer passed on to the market and so do not appear in the statistics
 - therefore the major and total losses have greater impact
 - Exposure Curves for captive business tend more towards diagonal than those based on the entire claims
- Swiss Re developed three captive exposure curves
 - fire
 - business interruption
 - fire and business interruption combined
- can be used on qualitatively comparable portfolios made of policies with high deductibles
- have designation Y_6
 - this naming says nothing about shape
 - curves lie between Gasser curves Y₃ and Y₄

- there are three more Exposure Curves for Oil and Petrochemicals (OPC)
 - fire runs in the are of Y₂
 - business interruption runs between diagonal and Y_1
 - fire and business interruption combined lies between Y_1 and Y_2
- all three have a high proportion of major losses typical for OPC
- original deductibles in OPC are usually high
 - > major losses are of greater importance
 - Exposure Curves for OPC business tend more towards diagonal


Swiss Re Exposure Curves

p = Probability of Total Loss

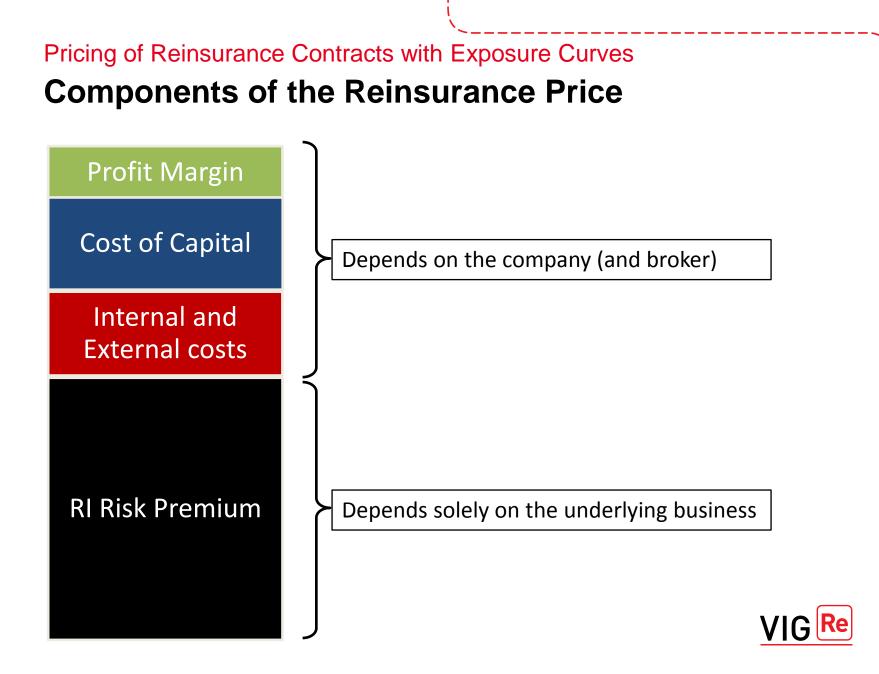
Exposure Curve	Parameter c	b	g	p	$\mathbb{E}[X]$	Scope of application	Basis	Size of Risk
	NA	NA	NA	NA	NA	OPC BI	PML	
Swiss 1	1.5	12.65	4.22	23.69%	34.86%	Personal lines	SI	<400 000 CHF
	NA	NA	NA	NA	NA	OPC Fire & BI combined	PML	
	NA	NA	NA	NA	NA	OPC Fire	PML	
Swiss 2	2.0	9.03	7.69	13%	22.09%	Commercial lines (small scale)	SI	<1 000 000 CHF
Swiss 3	3.0	3.67	30.57	3.27%	8.72%	Commercial lines (medium scale)	SI	<2 000 000 CHF
	3.1	3.29	35.56	2.81%	7.89	Captive BI	PML	
	3.4	2.35	56.78	1.76%	5.84%	Captive Fire & BI combined	PML	
	3.8	1.44	109.6	0.91%	3.89%	Captive Fire	PML	
Swiss 4	4	1.11	154.5	0.65%	3.19%	Industrial lines & large commercial	PML	>2 000 000
Lloyd's	5	0.25	992.3	0.10%	1.22%	Industry	Top location	
	Up to 8	NA	NA	NA	NA	Large scale Industry/ Multinational Companies	PML	

source: Guggisberg [2004]

Swiss Re Exposure Curves

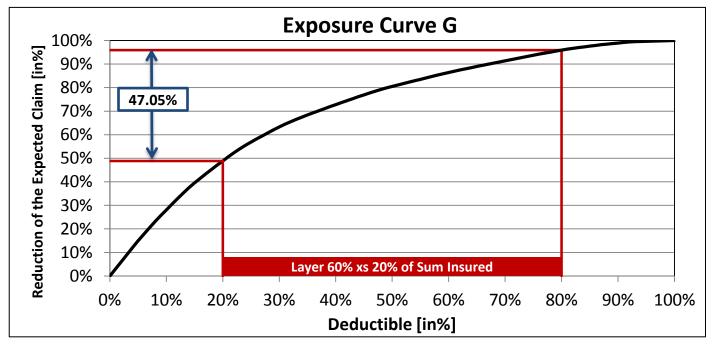
source: Guggisberg [2004]

Notes


- MBBEFD distributions are suitable only for **property insurance**
- These exposure curves are not sensitive to inflation
 - Maximum Loss is assumed to be equal to Sum Insured or to Probable Maximum Loss
- This makes it necessary to check the exposure curves only at relatively long intervals
- Limitation of exposure curves is that these curves were estimated on the market portfolios, so do not have to be accurate and give reasonable results on analyzed portfolio.
 - 1. Validate on loss profile of the company
 - 2. Validation on working layers (amount of losses to the layer implied by the curve)

Exposure Models in Reinsurance

Pricing of Reinsurance Contracts with Exposure Curves



Pricing of Reinsurance Contracts with Exposure Curves

Illustration - premium distribution by Exposure Curve

- original policy with SI = 1.5 M \in with risk premium P = 25 000 \in
- XL contract 0.9 M € xs 0.3M €
- in terms of SI: XL contract 60% xs 20%

The non-proportional coverage of the risk costs 47.05% of the original premium, i.e. RI Premium = 11 762.5 € VIG Re

Pricing of Reinsurance Contracts with Exposure Curves

Risk Profile

- Each portfolio contains risks of different size and quality with different cover
- Division of portfolio into sub-segments with a homogeneous risk structure

		Gro	ss Risk Pro	file				
Risk Prof	ile Name	Band S	I/PML	Nr. Of Risks	Total SI/PMI	Premium		
Fire - Propert	y Small Risks	0	500 000	81 847	4 073 604 95	4 4 515 515		
Fire - Propert	y Small Risks	500 000	1 000 000	1 566	1 118 702 40	2 984 372		
Fire - Propert			Gr	oss Risk Pro	file			
Fire - Propert		ile Name		SI/PML	Nr. Of Risks	Total SI/PML	Premium	
Fire - Propert	Fire - Propert	y Large Risks	(2 000 000		407 360 49	5 451 551	
File - Propen	Fire - Property	y Large Risks	2 000 000	5 000 000	783	2 237 404 80	3 1 968 744	
Fire - Propert	Fire - Propert			Gr	oss Risk Pro			
	Fire - Propert	Risk Prof	ile Name	Band	SI/PML	Nr. Of Risks	Total SI/PML	Premium
	Fire - Propert	Fire - Indus	strial Risks	(000 000 8	179	1 018 401 239	903 103
	Fire - Propert	Fire - Indus	strial Risks	8 000 000	25 000 000	392	4 474 809 607	3 937 488
	Fire - Propert	Fire - Indus	strial Risks	25 000 000	000 000 000	312	23 703 696 107	16 398 441
		Fire - Indus	strial Risks	90 000 000	000 000 08	73	5 915 249 922	3 721 409
		Fire - Indus	strial Risks	80 000 000	160 000 000	18	2 343 974 273	4 179 388
		Fire - Indus	strial Risks	160 000 000	320 000 000	10	2 111 761 192	2 918 733
		Fire - Indus	strial Risks	320 000 000	480 000 000	4	1 643 798 597	1 506 689

Modelling with different exposure curves

Pricing of Reinsurance Contracts with Exposure Curves

Modelling Steps

1. Calculation of the **average Sum Insured** per band k = 1, ..., n

$$\overline{SI}^k = \frac{\sum_{i=1}^{N^k} SI_i^k}{N^k},$$

where N^k is number of risks in the k^{th} band

2. Calculation of the **normalized retention** per band as percentage of SI/PML

$$\overline{m}^k = \min\left(\frac{R}{\overline{SI}^k}, 1\right)$$

- 3. Selection of the appropriate **exposure curve** for each band
- 4. Calculation of the value of exposure curve function $G(\overline{m}^k)$ for each k^{th} band
- 5. Calculation of **mean gross loss** per band $\mathbb{E}[Y^k] = P^k \cdot LR^k = \mathbb{E}[Y_{Ced}^k] + \mathbb{E}[Y_{Re}^k],$

where P^k is the gross premium and LR^k is gross Loss Ratio for k^{th} band VIG Re

Pricing of Reinsurance Contracts with Exposure Curves Modelling Steps

- 6. Calculation of **reinsurer's mean ceded loss per band** $\mathbb{E}[Y_{Re}^{k}] = (1 - G(\overline{m}^{k})) \cdot \mathbb{E}[Y^{k}]$
- 7. Calculation of the mean aggregated loss into layer
 - i. in case of **one layer with unlimited capacity** for all risk profiles it can be expressed as

$$\mathbb{E}[Y_{Re}] = \sum_{k=1}^{n} \mathbb{E}[Y_{Re}^{k}]$$

ii. the case of more (*L*) layers with the corresponding retentions denoted as ${}^{(l)}R$, l = 1, ..., L, reinsurer's mean ceded loss per k^{th} band and l^{th} layer can be expressed as

$$\mathbb{E}\begin{bmatrix} (l) Y_{Re}^k \end{bmatrix} = \begin{cases} \left(G\left((l+1)\overline{m}^k \right) - G\left((l)\overline{m}^k \right) \right) \cdot \mathbb{E}[Y^k], & l < L \\ \left(1 - G\left((l)\overline{m}^k \right) \right) \cdot \mathbb{E}[Y^k], & l = L \end{cases}$$

and reinsurer's mean ceded loss in *l*-th layer as

Pricing of Reinsurance Contracts with Exposure Curves Example – Quotation of XL 2M € xs 0.5M €

		Step 1	St	ep 2			
Band SI/PML	Band SI/PML Total SI/PML		Nr. Of Risks	Premium	Average SI/PML	R in % SI	R+L in % SI
0	100 000	3 895 341 592	46 425	7 502 888	83 906	100.0%	100.0%
100 000	200 000	2 237 330 404	13 994	4 158 031	159 878	100.0%	100.0%
200 000	300 000	1 910 346 260	7 483	3 053 667	255 291	100.0%	100.0%
300 000	500 000	1 316 269 834	4 014	1 150 935	327 920	100.0%	100.0%
500 000	750 000	1 146 935 002	1 599	1 668 885	717 283	69.7%	100.0%
750 000	1 000 000	810 399 944	936	1 280 817	865 812	57.7%	100.0%
1 000 000	1 500 000	697 830 194	563	941 983	1 239 485	40.3%	100.0%
1 500 000	2 500 000	403 707 061	199	523 651	2 028 679	24.6%	100.0%
2 500 000	5 000 000	106 697 299	32	190 575	3 334 291	15.0%	90.0%
5 000 000	10 000 000	40 104 436	8	41 152	5 013 055	10.0%	59.8%

Total Premium	20 512 584
---------------	------------

- Total Gross Loss Ratio is 60%
- for the sake of simplicity we assume that Loss Ratio is equal to 60% for all bands and one exposure curve is appropriate for all bands

Pricing of Reinsurance Contracts with Exposure Curves Example – Quotation of XL 2M € xs 0.5M €

		_		Step 4		Step 6
Band	Premium		G(d ₁)	G(d ₂)	$G(d_2)$ - $G(d_1)$	RI Premium
#1	7 502 888		100.0%	100.0%	0.0%	0
#2	4 158 031		100.0%	100.0%	0.0%	0
#3	3 053 667		100.0%	100.0%	0.0%	0
#4	1 150 935		100.0%	100.0%	0.0%	0
#5	1 668 885		91.2%	100.0%	8.8%	146 370
#6	1 280 817		85.2%	100.0%	14.8%	189 866
#7	941 983		73.1%	100.0%	26.9%	253 821
#8	523 651		56.4%	100.0%	43.6%	228 339
#9	190 575		39.5%	98.9%	59.4%	113 236
#10	41 152		25.6%	86.3%	60.7%	24 981
Total Premium	20 512 584			Loss Ratio	60%	956 614
	\checkmark	1				
RI Rate	2.798%	4				573 968

Exposure Models in Reinsurance

Increased Limit Factors

Introduction

- another type of exposure rating that can be used in liability non-proportional reinsurance
- the object of insurance is not known in advance
- the maximum possible loss is hardly to be estimated and can be much higher than sum insured
- helps
 - when not enough historical claims are available
 - if any of the experience rating based approaches is not possible to be applied reasonably (e.g. limited data to develop charges for high limits of liability coverages – these may represent very significant potential loss)
- parameters based on enough market data need to be applied

Definition

- usually available in tabular form
- An **increased limit factor** (*ILF*) at limit *L* related to basic limit *B* is defined as:

$$ILF(L) = \frac{\mathbb{E}[Y^L]}{\mathbb{E}[Y^B]},$$

• where

- $\mathbb{E}[Y^L]$ denotes mean expected aggregate loss at the policy limit L
- $\mathbb{E}[Y^B]$ denotes the mean aggregate loss at the basic limit B
- Both denote aggregate losses assuming all original policies had limits *L* or *B* respectively, i.e.
 - $Y^L = \sum_{i=1}^N \min(X_{i,L})$
 - $Y^B = \sum_{i=1}^N \min(X_{i,B})$

Definition

- it is assumed, that claims frequency is independent of claim severity and the frequencies are equal independently on the purchased limit
- Therefore

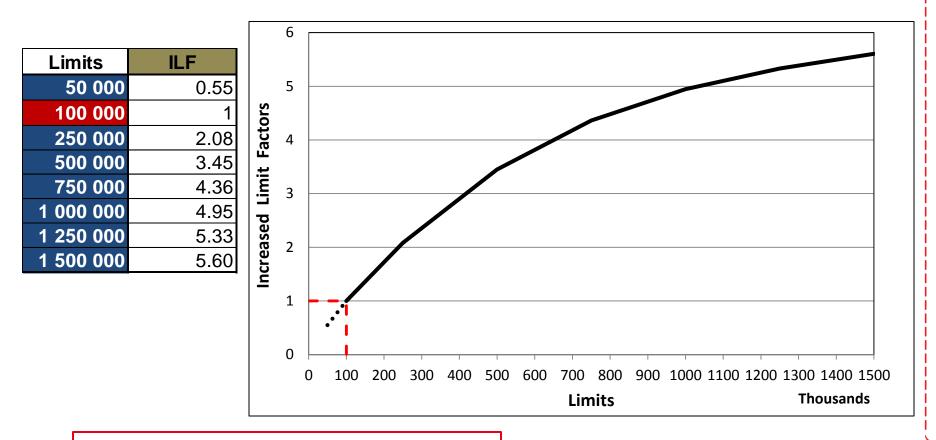
$$ILF(L) = \frac{\mathbb{E}[Y^L]}{\mathbb{E}[Y^B]} = \frac{\mathbb{E}[N^L]\mathbb{E}[X^L]}{\mathbb{E}[N^B]\mathbb{E}[X^B]} = \frac{\mathbb{E}[X^L]}{\mathbb{E}[X^B]}$$

- assumptions need to be verified.
 - ILF should be constructed for different classes of liability separately
- in notation as we had for exposure curves:

$$ILF(L) = \frac{LAS(L)}{LAS(B)}$$

Example

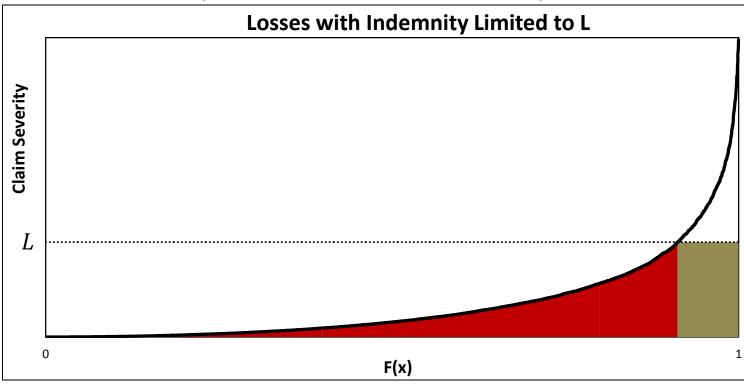
• ILF Table


Claim	Loss at 100 000		Loss at 500 000		Loss at 1 000 000	Loss at 1 250 000	Loss at 1 500 000
Severity		Increased Limit					Increased Limit
50 000	50 000	50 000	50 000	50 000	50 000	50 000	50 000
60 000	60 000	60 000	60 000	60 000	60 000	60 000	60 000
120 000	100 000	120 000	120 000	120 000	120 000	120 000	120 000
165 000	100 000	165 000	165 000	165 000	165 000	165 000	165 000
270 000	100 000	250 000	270 000	270 000	270 000	270 000	270 000
475 000	100 000	250 000	475 000	475 000	475 000	475 000	475 000
580 000	100 000	250 000	500 000	580 000	580 000	580 000	580 000
780 000	100 000	250 000	500 000	750 000	780 000	780 000	780 000
1 100 000	100 000	250 000	500 000	750 000	1 000 000	1 100 000	1 100 000
2 000 000	100 000	250 000	500 000	750 000	1 000 000	1 250 000	1 500 000
Total	910 000	1 895 000	3 140 000	3 970 000	4 500 000	4 850 000	5 100 000
LAS	91 000	189 500	314 000	397 000	450 000	485 000	510 000
ILF	1	2.08	3.45	4.36	4.95	5.33	5.60

Interpretation: If the limit increases 10 times, the loss will increase only 4.95 times

Example

ILF Curve


Interpolation between limits is necessary

Limited Average Severity

• for any limit $L \ge 0$, the limited average severity (LAS), at a limit of *L*, in the case of a continuous distribution with distribution function *F*, can be expressed as

$$LAS(L) = \mathbb{E}[X^{L}] = \int_{0}^{L} x \, dF(x) + L \cdot [1 - F(L)] = \int_{0}^{L} (1 - F(x)) dx$$

Properties

• for derivative of ILF it holds:

$$\frac{d}{dL}ILF(L) = \frac{1}{\mathbb{E}[Y^B]} \cdot \frac{d}{dL} \left(\int_0^L x \, dF(x) + L \cdot [1 - F(L)] \right)$$
$$= \frac{1}{\mathbb{E}[Y^B]} \left(L \frac{dF(L)}{dL} + [1 - F(L)] - L \frac{dF(L)}{dL} \right)$$

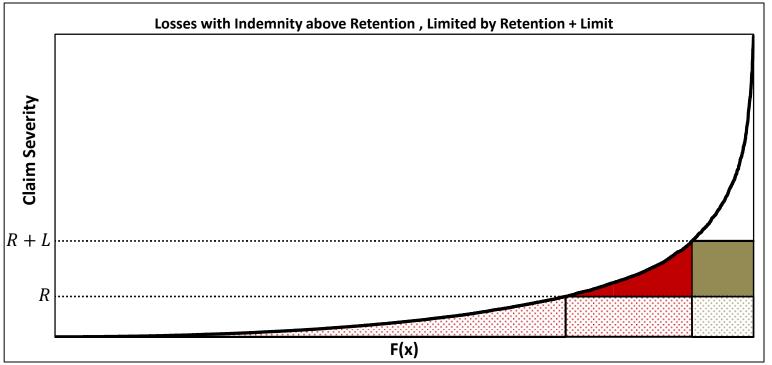
• because

$$ILF'(L) = \frac{1 - F(L)}{LAS(B)} \ge 0$$

 \succ *ILF*(*L*) is an increasing function of *L*

• as

$$ILF''(L) = \frac{-f(L)}{LAS(B)} \le 0$$


ILF is concave

Limited Average Severity

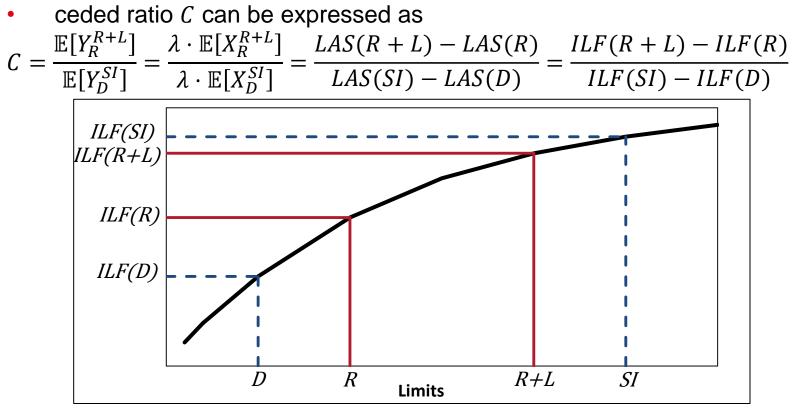
- LAS can be used to express the loss into XL layer
- if expected number of losses from ground up is λ then expected loss into XL layer with retention *R* and limit *L* is

$$\mathbb{E}[Y_R^{R+L}] := \lambda \cdot \mathbb{E}[X_R^{R+L}] := \lambda \left[\int_R^{R+L} (x-R) \, dF(x) + L \cdot [1-F(R+L)] \right]$$

Limited Average Severity

• previous can be expressed as

$$\mathbb{E}[Y_R^{R+L}] = \lambda \cdot \left[\int_R^{R+L} (x-R)dF(x) + L \cdot [1-F(R+L)] \right]$$


$$= \lambda \cdot \left[\int_{R}^{R+L} x \, dF(x) + (R+L) \cdot [1 - F(R+L)] - R[1 - F(R)] \right]$$

 $= \lambda \cdot [LAS(R + L) - LAS(R)]$

Ceded Share

• ILF determine the ratio in which original loss from policy with sum insured *SI* and deductible *D* is divided between reinsurer and cedent

• in case D = 0

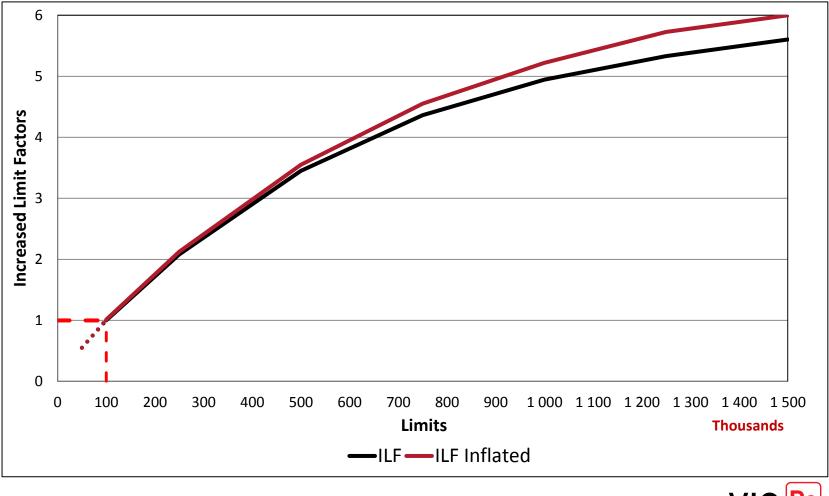
$$C = \frac{ILF(R+L) - ILF(R)}{ILF(SI)}$$

Increased Limit Factors Inflation

• disadvantage of the liability exposure rating method is the sensitivity of *LAS* and therefore also *ILF* on inflation

 Assuming a constant inflation applied on all sizes of losses, the basic limit losses (LAS(B)) will be inflated by lower rate than losses limited at higher limits of liability (LAS(L))

> will lead to even higher inflation in excess layers


• This phenomenon is called as "Leveraged Effect of Inflation"

Inflation Example

	Olaim	Loss at	Loss at	Loss at	Loss at	Loss at	Loss at	Loss at
	Claim	100 000	250 000	500 000	750 000	1 000 000	1 250 000	1 500 000
	Severity	Basic Limit	Increased Limit	Increased Limit	Increased Limit	Increased Limit	Increased Limit	Increased Limit
1	50 000	50 000	50 000	50 000	50 000	50 000	50 000	50 000
/	60 000	60 000	60 000	60 000	60 000	60 000	60 000	60 000
	120 000	100 000	120 000	120 000	120 000	120 000	120 000	120 000
	165 000	100 000	165 000	165 000	165 000	165 000	165 000	165 000
	270 000	100 000	250 000	270 000	270 000	270 000	270 000	270 000
	475 000	100 000	250 000	475 000	475 000	475 000	475 000	475 000
	580 000	100 000	250 000		580 000	580 000	580 000	580 000
	780 000	100 000	250 000	500 000	750 000	780 000	780 000	780 000
	1 100 000	100 000	250 000	500 000	750 000	1 000 000	1 100 000	1 100 000
	2 000 000	100 000	250 000	500 000	750 000	1 000 000		1 500 000
	Total	910 000	1 895 000		3 970 000	4 500 000		5 100 000
	LAS	91 000	189 500	314 000	397 000	450 000	485 000	510 000
Inflated by 10 %	ILF	1	2.08	3.45	4.36	4.95	5.33	5.60
initiated by 10 /8								
		Loss at	Loss at	Loss at	Loss at	Loss at	Loss at	Loss at
			250 000	500 000	750 000	1 000 000	1 250 000	1 500 000
	Severity	Basic Limit	Increased Limit	Increased Limit	Increased Limit	Increased Limit	Increased Limit	Increased Limit
	Severity 55 000	Basic Limit 55 000	Increased Limit 55 000	Increased Limit 55 000	Increased Limit 55 000	Increased Limit 55 000	Increased Limit 55 000	Increased Limit 55 000
	Severity 55 000 66 000	Basic Limit 55 000 66 000	Increased Limit 55 000 66 000	Increased Limit 55 000 66 000	Increased Limit 55 000 66 000	Increased Limit 55 000 66 000	Increased Limit 55 000 66 000	Increased Limit 55 000 66 000
Leveraged	Severity 55 000 66 000 132 000	Basic Limit 55 000 66 000 100 000	Increased Limit 55 000 66 000 132 000	Increased Limit 55 000 66 000 132 000	Increased Limit 55 000 66 000 132 000	Increased Limit 55 000 66 000 132 000	Increased Limit 55 000 66 000 132 000	Increased Limit 55 000 66 000 132 000
Leveraged	Severity 55 000 66 000 132 000 181 500	Basic Limit 55 000 66 000 100 000 100 000	Increased Limit 55 000 66 000 132 000 181 500	Increased Limit 55 000 66 000 132 000 181 500	Increased Limit 55 000 66 000 132 000 181 500			
Leveraged Effect of	Severity 55 000 66 000 132 000 181 500 297 000	Basic Limit 55 000 66 000 100 000 100 000 100 000	Increased Limit 55 000 66 000 132 000 181 500 250 000	Increased Limit 55 000 66 000 132 000 181 500 297 000	Increased Limit 55 000 66 000 132 000 181 500 297 000	Increased Limit 55 000 66 000 132 000 181 500 297 000	Increased Limit 55 000 66 000 132 000 181 500 297 000	Increased Limit 55 000 66 000 132 000 181 500 297 000
Effect of	Severity 55 000 66 000 132 000 181 500 297 000 522 500	Basic Limit 55 000 66 000 100 000 100 000 100 000 100 000	Increased Limit 55 000 66 000 132 000 181 500 250 000 250 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 500 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500
-	Severity 55 000 66 000 132 000 181 500 297 000 522 500 638 000	Basic Limit 55 000 66 000 100 000 100 000 100 000 100 000 100 000	Increased Limit 55 000 66 000 132 000 181 500 250 000 250 000 250 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 500 000 500 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000
Effect of	Severity 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000	Basic Limit 55 000 66 000 100 000 100 000 100 000 100 000 100 000	Increased Limit 55 000 66 000 132 000 181 500 250 000 250 000 250 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 500 000 500 000 500 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 750 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000
Effect of	Severity 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000	Basic Limit 55 000 66 000 100 000 100 000 100 000 100 000 100 000 100 000	Increased Limit 55 000 66 000 132 000 181 500 250 000 250 000 250 000 250 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 500 000 500 000 500 000 500 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 750 000 750 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 000 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000
Effect of	Severity 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 2 200 000	Basic Limit 55 000 66 000 100 000 100 000 100 000 100 000 100 000 100 000 100 000	Increased Limit 55 000 66 000 132 000 181 500 250 000 250 000 250 000 250 000 250 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 500 000 500 000 500 000 500 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 750 000 750 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 000 000 1 000 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 1 250 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 1 500 000
Effect of	Severity 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 2 200 000	Basic Limit 55 000 66 000 100 000 100 000 100 000 100 000 100 000 100 000 921 000	Increased Limit 55 000 66 000 132 000 181 500 250 000 250 000 250 000 250 000 250 000 1 934 500	Increased Limit 55 000 66 000 132 000 181 500 297 000 500 000 500 000 500 000 500 000 500 000 3 231 500	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 750 000 750 000 750 000 4 142 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 000 000 1 000 000 4 750 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 1 250 000 5 210 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 1 500 000 5 460 000
Effect of	Severity 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 2 200 000 Total LAS	Basic Limit 55 000 66 000 100 000 100 000 100 000 100 000 100 000 100 000 100 000	Increased Limit 55 000 66 000 132 000 181 500 250 000 250 000 250 000 250 000 250 000 1 934 500 193 450	Increased Limit 55 000 66 000 132 000 181 500 297 000 500 000 500 000 500 000 500 000 3 231 500 323 150	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 750 000 750 000 750 000 4 142 000 414 200	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 000 000 1 000 000 4 750 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 5 210 000 521 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 1 500 000 5 460 000
Effect of	Severity 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 2 200 000	Basic Limit 55 000 66 000 100 000 100 000 100 000 100 000 100 000 100 000 921 000	Increased Limit 55 000 66 000 132 000 181 500 250 000 250 000 250 000 250 000 250 000 1 934 500	Increased Limit 55 000 66 000 132 000 181 500 297 000 500 000 500 000 500 000 500 000 3 231 500 323 150	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 750 000 750 000 750 000 4 142 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 000 000 1 000 000 4 750 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 1 250 000 5 210 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 1 500 000 5 460 000
Effect of	Severity 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 2 200 000 Total LAS ILF	Basic Limit 55 000 66 000 100 000 100 000 100 000 100 000 100 000 100 000 100 000 921 000 92 100 1	Increased Limit 55 000 66 000 132 000 181 500 250 000 250 000 250 000 250 000 250 000 250 000 1 934 500 193 450 2.13	Increased Limit 55 000 66 000 132 000 181 500 297 000 500 000 500 000 500 000 500 000 500 000 3 231 500 323 150 3.55	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 750 000 750 000 750 000 4 142 000 414 200 4.55	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 000 000 1 000 000 4 750 000 475 000 5.22	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 1 250 000 5 210 000 521 000 5.73	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 1 500 000 5 460 000 6.00
Effect of	Severity 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 2 200 000 Total LAS	Basic Limit 55 000 66 000 100 000 100 000 100 000 100 000 100 000 100 000 921 000	Increased Limit 55 000 66 000 132 000 181 500 250 000 250 000 250 000 250 000 250 000 1 934 500 193 450	Increased Limit 55 000 66 000 132 000 181 500 297 000 500 000 500 000 500 000 500 000 3 231 500 323 150	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 750 000 750 000 750 000 4 142 000 414 200	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 000 000 1 000 000 4 750 000	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 1 250 000 5 210 000 521 000 5.73	Increased Limit 55 000 66 000 132 000 181 500 297 000 522 500 638 000 858 000 1 210 000 1 500 000 5 460 000

Leveraged Effect of Inflation

Riebessel's Parameterization of ILFs

- approach which has been often used by German insurance and reinsurance companies
- it is inflation resistant
- **Riebessel's Curves** are based on the assumption that each time $i \in \mathbb{N}$ the sum insured doubles, the risk cost increases by constant factor of (1 + z) with $z \in (0,1)$, i.e.

$$P(2^iL) = P_L \cdot (1+z)^i,$$

where $P_L = P(L)$ denotes standard risk premium for a limit of L

 here the sum insured acts only as limit of indemnity and not as a measure of the size of the risk like in Property insurance, the premium increases less than the sum insured

Riebessel's Parameterization of ILFs

- z is set according to the type of underlying portfolio
- by using a substitution $a = 2^i$ (i.e. $i = \log_2 a$) we have

$$P(aL) = P_L \cdot (1+z)^{\log_2 a}$$

• can be rewritten more helpful to give the premium for any desired limit in terms of the relativity to the base (y = aL)

$$P(y) = P_L \cdot (1+z)^{\log_2\left(\frac{y}{L}\right)} = P_L \cdot \left(\frac{y}{L}\right)^{\log_2(1+z)}$$

• this is called **Riebessel's formula** with $z \in (0,1)$ for net premium P(y) at any sum insured y>0

Riebessel's Parameterization of ILFs

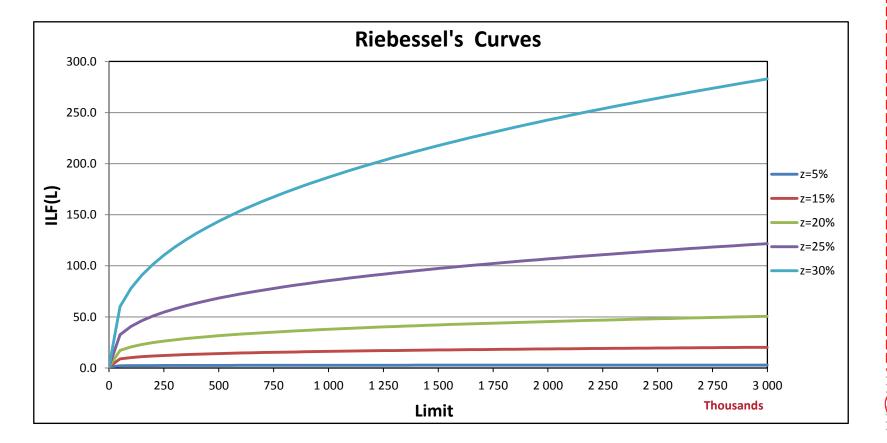
according to collective model

 $P(y) = \mathbb{E}[N] \cdot \mathbb{E}[\min(X, y)]$

• Then for *ILF* we have

$$ILF(L) = \frac{LAS(L)}{LAS(B)} = \frac{P(L)}{P(B)} = \left(\frac{L}{B}\right)^{\log_2(1+z)}$$

not affected by currency changes or inflation


- Mack & Fackler [2003] demonstrated that there exist loss distributions that lead to Riebesell's formula and that the formula is consistent with the assumption that the tail of severity distribution has a Pareto tail above a certain threshold
- generalizations which offer more flexibility regarding the severity distribution can be found in <u>Riegel [2008]</u>

Riebessel Parameterization of ILFs

• with Base Limit =1 we have

$$ULF(SI) = (1+z)^{\log_2 SI}$$

Exposure Models in Reinsurance

Summary & Bibliography

Summary

- Exposure Rating gives us consistent pricing of reinsurance contracts
 - without intensive computational simulation runs
 - it is indispensable in case of insufficient loss history
 - in case of sufficient number of historical losses it can serve for creating second opinion on the final rate after performing experience ratings -Historical experience alone is NOT necessarily the best predictor of future experience
- MBBEFD distributions only depend on two parameters and are suitable for many property insurance branches
 - Not sensitive to inflation
 - One of the weaknesses is the uncertainty about choice of the appropriate exposure curve. The choice of the curve is always subjective and requires an in-depth knowledge of the analyzed portfolio.
 - aggregated risk profile is provided might be also helpful to use some blended curves for some bands of risk profile which includes mix of various types of risks

Summary

- ILF curves suitable for casualty branches are always company specific
 - no standard curves
 - sensitive to inflation
 - Riebessel Parameterization of ILFs
 - it is inflation resistant
- Further development can be found in <u>Desmedt et al. [2012]</u>
 - show methods to overcome the different limitations using a combination of experience and exposure rating techniques if historical profile information is available
 - propose an experience rating method in which the measure for frequency and the as-if claims are determined using the evolutions observed in the risk profiles
 - For pricing unused capacity exposure rating calibrated on the experience rate for a working layer is used

Bibliography

Bernegger Stefan. [1997] 'The Swiss Re Exposure Curves and the MBBEFD Distribution Class', ASTIN Bulletin, 27(1), pp. 99–111. doi: 10.2143/AST.27.1.563208. [back]

Desmedt S., Snoussi M., Chenut X. and Walhin J.F. [2012] '*Experience and Exposure Rating for Property Per Risk Excess of Loss Reinsurance Revisited*', *ASTIN Bulletin*, 42(1), pp. 233–270. <u>doi:</u> <u>10.2143/AST.42.1.2160742</u>. [back]

Dutang Christophe, Gesmann Markus & Spedicato Giorgio. [2016] '*Exposure rating, destruction rate models and the mbbefd package*',

https://cran.r-project.org/web/packages/mbbefd/vignettes/Introduction_to_mbbefd.pdf [back]

Guggisberg Daniel. [2004] '*Exposure rating*', Swiss Re, Zurich 2004. http://media.cgd.swissre.com/documents/pub_exposure_rating_en.pdf [back]

Mack Thomas & Fackler Michael. [2003] '*Exposure Rating in Liability Reinsurance*', Blätter der DGVFM, 26(2), pp. 229-238. <u>doi:10.1007/BF02808374</u>. [back]

Riegel Ulrich. [2008] '*Generalizations of common ILF models*', Blätter der DGVFM, 29(1), pp. 45-71. DOI: 10.1007/s11857-008-0045-3. [back]

White Steve. [2005] '*Property Ratemaking - an Advanced Approach*', Seminar on Reinsurance 6-7 June 2005. <u>https://www.casact.org/education/reinsure/2005/handouts/white.ppt [back]</u>

www.vig-re.com

Mgr. Michal Bošeľa MSc

Non-Life Actuary Actuarial Analytics

VIG Re zajišťovna, a.s. e-mail: <u>m.bosela@vig-re.com</u> <u>michal.bosela@matfyz.cz</u>