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Abstract

The purpose of this paper is to show one possible approach how to construct a
proxy for a term structure of volatilities in currencies (in particular in the Czech
crown), where there is a limited interest rate derivatives market (swaption mar-
ket, cap/floor market, etc.). The usual way how to get a particular term structure
of volatility is from the market prices of interest rate derivatives by inverse engin-
eering, i.e. extracting volatilities by equating the market price with the particular
Black-Scholes formula for the derivative. This is a very common procedure in coun-
tries where such interest rate markets exist. However, in many countries (including
the Czech Republic) there are no such markets and yet there is a great need (by
banks, investment companies, insurance companies ) to have such interest rate deriv-
atives priced in its own currency.

The approach derived below describes the decomposition of the known (swap-
tion or caplet) volatility into a semi-historical part and an implied part. While the
semi-historical part can be computed for any unknown (swaption or caplet) volatility
from a term stucture of interest rate, the implied part cannot be determined without
a particular market. Therefore, there is no possible way to arrive at the precise im-
plied volatility for currencies where there are no such markets. The question remains
whether we can at least estimate or approximate these volatilities. In this paper we
call the resulting quantities pseudo-implied volatilities.

1 Introduction

Since it is essential to have some idea of relationships between different market models
we start with common assumptions concerning the price dynamics of zero-coupon bond
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and work our way up to the more complex market models such as LIBOR Market Model
(LMM) and Swap Market Model (SMM). Along the way we come across interesting formu-
las and relationships some of which are important in our construction of term structure of
volatilities.

In the following section on fundamentals we consider a filtered probability space
(Ω, F, F , P ) with filtration F = {F(t); t ≥ 0} generated by a k-dimensional Brownian
motion W (t)k = (W1(t),W2(t), . . . , Wk(t))

T .

2 Fundamentals

2.1 Bond-price dynamics

As we mentioned earlier we start with the usual assumption that the price of zero-
coupon bond under the physical probability measure P is lognormally distributed. This
means that the price at time t of Tj−zero-coupon bond (means zero-coupon bond maturing
at time Tj) is driven by stochastic differential equation (SDE)

dB(t, Tj) = µ(t, Tj)B(t, Tj)dt+B(t, Tj)σ
T (t, Tj)kdW (t)k, (1)

for maturities indexed by j = 1, 2, . . . , N ,where 0 ≤ t < T1 < T2 < . . . < TN ,µ(t, Tj) is a
non-random function of time t and Tj,σ(t, Tj)k = (σ1(t, Tj), σ2(t, Tj), . . . , σk(t, Tj))

T is a
non-random k- dimensional volatility term of B(t, Tj) and finally
W (t)k = (W1(t),W2(t), . . . , Wk(t))

T is a k- dimensional Brownian motion under the phys-
ical probability measure P .

Although the non-random drift and diffusion coefficients can be estimated from the
time series of zero-coupon bonds, it is not guaranteed that such estimated equation (1) will
exclude arbitrage. It is well known that in the absence of the arbitrage the instantaneous
rate of return of an asset must equal to the risk-free rate, in our case it is the short-term
interest rate {r(t); t ≥ 0} used in the money market.

Therefore we wish to rewrite the previous equation (1) in the following way

dB(t, Tj) = r(t)B(t, Tj)dt+B(t, Tj)[(µ(t, Tj)− r(t))dt+ σT (t, Tj)kdW (t)k] (2)

= r(t)B(t, Tj)dt+B(t, Tj)
k∑
i=1

σi(t, Tj)(Θi(t) + dWi(t)), (3)

where the last equality (3) holds only if

µ(t, Tj)− r(t) =
k∑
i=1

σi(t, Tj)Θi(t), (4)
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or alternatively, only if

µ(t, Tj)− r(t) = σT (t, Tj)kΘ(t)k, (5)

for all maturity dates Tj ≤ TN .
The components of Θ(t)k are called market prices of risk for zero-coupon bond B(t, Tj),

for Tj ≤ TN . Notice that the number of independent Brownian motions dictates the number
of market prices of risk.

According to the multidimensional Girsanov theorem (found for example in [5], page
224) we can define new probability measure

P̃ (A) =

∫
A

Z̃(T )dP (ω), (6)

for all A ∈ F(T ), where the stochastic process {Z̃(t); t ≥ 0} is the Radon-Nikodým deriv-
ative process

Z̃(t) =
dP̃ (ω)

dP (ω)
|F(t)

= exp

{
−
∫ t

0

ΘT (s)kdW (s)k −
1

2

∫ t

0

||Θ(s)k||2ds

}
.

Under this new probability measure P̃ , the k- dimensional stochastic process {W̃ (t)k; t ≥ 0}
defined

W̃ (t)k = W (t)k +

∫ t

0

Θ(s)kds,

or alternatively

W̃i(t) = Wi(t) +

∫ t

0

Θi(s)ds, for i = 1, 2, . . . , k

is Brownian motion. Therefore the last equality (3) can be rewritten as

dB(t, Tj) = r(t)B(t, Tj)dt+B(t, Tj)σ
T (t, Tj)kdW̃ (t)k, (7)

for Tj ≤ TN .

2.2 LIBOR Market Model (LMM)

Since the forward LIBOR {L(t;Tj, Tj+1); t ≥ 0} is the simple interest rate defined

L(t;Tj, Tj+1) =
1

∆Tj

(
B(t, Tj)

B(t, Tj+1)
− 1

)
, (8)
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(see for example [5] , [2] or [4]), where ∆Tj = Tj+1−Tj, one can derive the stochastic differ-
ential for (8) rather easily by applying the Itô-Doeblin formula, invoking new probability

measure P̃ Tj+1 (for full derivation see Appendix A.1) and using the equation in (7). We
obtain

dL(t;Tj, Tj+1) = L(t;Tj, Tj+1)
1 + ∆TjL(t;Tj, Tj+1)

∆TjL(t;Tj, Tj+1)
(σT (t, Tj)k − σT (t, Tj+1)k)dW̃

Tj+1(t)k.

(9)

We can see that the forward LIBOR {L(t;Tj, Tj+1); t ≤ Tj} is P̃ Tj+1-martingale with rather
complicated volatility term, which we denote

γ(t, Tj)k
def
=

1 + ∆TjL(t;Tj, Tj+1)

∆TjL(t;Tj, Tj+1)
(σ(t, Tj)k − σ(t, Tj+1)k) (10)

This volatility term will be very important later in the paper. The desired LIBOR market
model (LMM) is then the stochastic differential equation

dL(t;Tj, Tj+1) = L(t;Tj, Tj+1)γT (t, Tj)kdW̃
Tj+1(t)k (11)

with volatility term γ(t, Tj)k prescribed directly. It is essential to understand that to get the
LMM we keep the state variable L(t;Tj, Tj+1) but prescribe it the volatility γ(t, Tj)k directly
(it is similar to prescribing the volatility to the forward rate in HJM model). In doing

so, we get lognormally distributed forward LIBOR under the Tj+1-forward measure P̃ Tj+1

with deterministic volatility vector γ(t, Tj)k. Also since the forward LIBOR is lognormally

distributed under P̃ Tj+1 , it makes it very easy to use such variable rate to price common
interest rate derivatives such as swap, cap, floor, etc, see for example [5], [2], [1].

2.3 Interest rate swap & swap rate

Interest rate swap is a contract between two parties to exchange interest payments out of
notional principal. Most interest rate swaps exchange floating-rate payments for fixed-rate
payments and only the net payment is made. The party that pays the fixed-rate payment
and receives the floating-rate payment holds payer’s swap whereas the counter party holds
receiver’s swap.

Let us now price the payer swap. First, we denote by K the fixed rate, notional principal
N , and (Tm, Tn〉 is the interval where all the payments are to be exchanged, i.e.

Tm+1 < . . . < Tn−1 < Tn

are the payment dates.
Here we derive the price at time t < Tm of the payer swap and denote it

SWAPp(t;Tm, Tn, K,N). This will give us so called forward-starting payer swap. Notice
that if t = Tm, then we get spot-starting payer swap. To price the payer swap we just need
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to price both incoming and outgoing cash flows. The outgoing fixed cash flows in the payer
swap are depicted below in the Figure 1. Therefore the price at time t < Tm of all fixed
rate payments on (Tm, Tn〉 is

−N ·K · (∆TmB(t, Tm+1) + ∆Tm+1B(t, Tm+2) + . . .+ ∆Tn−1B(t, Tn))

= −N ·K
n−1∑
j=m

∆TjB(t, Tj+1). (12)

t Tm Tm+1 Tm+2 TnTn−1

incoming CF

outgoing CF

−N ·K −N ·K −N ·K −N ·K

Figure 1: outgoing CF in the payer swap

As a floating rate we take the LIBOR. Because the forward LIBOR L(t;Tj, Tj+1) is
the interest rate fixed at time t for borrowing or investing over the interval (Tj, Tj+1), the
following series of

”
picture equations“ (Figure 2) hold for one floating-rate payment with

N = 1 unit of currency (UoC).
Therefore, the series of the floating-rate payments can be rewritten as two fixed pay-

ments, see Figure 3, which value at time t < Tm is

N(B(t, Tm)−B(t, Tn)). (13)

Putting (12) and (13) together gives us desired pricing formula

SWAPp(t;Tm, Tn, K,N) = N

(
B(t, Tm)−B(t, Tn)−K

n−1∑
j=m

∆TjB(t, Tj+1)

)
. (14)

Of course, one would arrive at the same formula by just using the risk-neutral pricing
formula and then changing to Tj+1-forward measure P̃ Tj+1 and taking advantage of the fact

that LIBOR is P̃ Tj+1-martingale.
When the swap contract is initiated, its value is zero. This is logical, since no party is

required to put up any upfront payments. The fixed interest rate K that make the swap
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t Tj Tj+1

L(t;Tj , Tj+1)

=

t Tj

=
Tj+1

1 + L(t;Tj , Tj+1)

t Tj
Tj+1

1 UoC

−1 UoC

−1 UoC

1 UoC

Figure 2: one floating-rate payment with N = 1

t Tm Tm+1 Tm+2 TnTn−1

incoming CF

outgoing CF

N

−N

Figure 3: outgoing CF in the payer swap

have zero value is called swap rate and we denote it Rm,n(t). Therefore the swap rate with
tenor δ = Tn − Tm is from (14)

Rm,n(t) =
B(t, Tm)−B(t, Tn)∑n−1
j=m ∆TjB(t, Tj+1)

. (15)

There is one important relationship that will be needed later on in this paper between the
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forward LIBOR and swap rate.

Rm,n(t) =
B(t, Tm)−B(t, Tn)∑n−1
j=m ∆TjB(t, Tj+1)

=

∑n−1
j=m (B(t, Tj)−B(t, Tj+1))∑n−1

j=m ∆TjB(t, Tj+1)

=

∑n−1
j=m L(t;Tj, Tj+1)∆TjB(t, Tj+1)∑n−1

j=m ∆TjB(t, Tj+1)

=
n−1∑
j=m

αj(t)L(t, Tj, Tj+1), (16)

where in (16) we defined stochastic weight {αj(t); t ≥ 0} as

αj(t) =
∆TjB(t, Tj+1)∑n−1
j=m ∆TjB(t, Tj+1)

, j = m, . . . , n− 1, n. (17)

This relationship provides us a way to derive the dynamics of swap rate which in turn will
be needed in pricing of swaptions.

2.4 Swap Market Model (SMM)

In this section, we use the last relationship (16) to derive the dynamics of swap rate
{Rm,n(t); t ≥ 0} with tenor δ = Tn − Tm. However, this relationship tells us that it is not
possible for the swap rate to have lognormal distribution even under its own corresponding
martingale measure. Nevertheless, we will show that by reasonable approximation one can
get stochastic differential equation of the swap rate that is lognormally distributed and
can be therefore used very well in pricing swaptions. Pricing errors that arise by such
approximation are generally very small and can be in some instances smaller than the
typical bid-ask spreads (see [4]). So we have

dRm,n(t) = d

(
n−1∑
j=m

αj(t)L(t;Tj, Tj+1)

)

=
n−1∑
j=m

(αj(t)dL(t;Tj, Tj+1) + L(t;Tj, Tj+1)dαj(t) + d[αj, L](t)). (18)

After obtaining stochastic differential for {αj(t); t ≥ 0} in (17), differential of covariation

of {αj(t); t ≥ 0} and {L(t;Tj, Tj+1), t ≤ Tj}, defining new probability measure P̃ SW and
some simple algebra (for full derivation see Appendix A.2), we get
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dRm,n(t) = Rm,n(t)
n−1∑
j=m

αj(t)L(t;Tj, Tj+1)

Rm,n(t)
(σ(t, Tj+1)k − σA(t)k + γ(t, Tj)k)

T dW̃ SW (t)k,

(19)

where we denoted by σA(t)k the volatility of the price at time t < Tm of the unit cash-flow
{Am,n(t); t ≥ 0} occuring on the interval 〈Tm+1, Tn〉, i.e.

Am,n(t) =
n−1∑
j=m

∆TjB(t, Tj+1),

and

σA(t)k =
n−1∑
j=m

αj(t)σ(t, Tj+1)k. (20)

Altough {Rm,n(t); t ≥ 0} is P̃ SW -martingale, it does not have any useful probability distri-
bution, since its volatility term contains stochastic entities. To make {Rm,n(t); t ≥ 0} follow
a lognormal distribution, we make following arguments. First of all it was shown in [4], that
the stochastic coefficient

αj(t)L(t;Tj, Tj+1)

Rm,n(t)

has a very low variability and therefore we can take it as a constant dependent on j, i.e.
we put

wj =
αj(t)L(t;Tj, Tj+1)

Rm,n(t)
, for j = m, . . . , n− 1.

Furthermore, since σA(t)k is the stochastic weighted average (note, that αj’s are stochastic
processes whereas σ(t, Tj+1)k is deterministic) of deterministic σ(t, Tj+1)k, the contributions
σ(t, Tj+1)k − σA(t)k to the whole sum in the volatility term of {Rm,n(t); t ≥ 0} are neg-
ligible. This could be seen from historically observed volatilities of zero-coupon bonds, see
Table 1 for the relative errors (for R1,m(t)) of these contributions. Therefore we arrive at
the following approximation of (19)

dRm,n(t) ≈ Rm,n(t)
n−1∑
j=m

wjγ
T (t, Tj)kdW̃

SW (t)k

= Rm,n(t)

(
n−1∑
j=m

wjγ
T (t, Tj)k

)
dW̃ SW (t)k

= Rm,n(t)γTm,n(t)kdW̃
SW (t)k. (21)
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Table 1: Relative errors

n 2 3 4 5 6 7 8
R1,n(12.08.2014) 0,00359 0,00279 0,00300 0,00457 0,00446 0,00432 0,00417
R1,n(12.08.2015) 0,00246 0,00278 0,00299 0,00456 0,00444 0,00430 0,00415

This approximation (21) is the famous Swap Market Model (SMM). Moreover, one can

see that under the forward swap-rate probability measure P̃ SW the swap rate process
{Rm,n(t); t ≥ 0} is now lognormally distributed, since the volatility term

γm,n(t)k =
n−1∑
j=m

wjγ(t, Tj)k, (22)

is at most some deterministic function of time. This fact is essential in pricing swaptions, as
we’ll see in the next section.

2.5 European swaption

European style swaption gives its holder the right but not the obligation to enter the
interest rate swap contract at expiration date with a specific fixed interest rate K.

As before, let SWAPp(t;Tm, Tn, K, 1) denote the price of the payer swap at time t <
Tm < Tn with tenor δ = Tn−Tm, fixed rate K and notional N = 1. Then the payoff function
of the payer swaption at time Tm (since Tm+1 is the first payment date in the swap) is

Vp(Tm) = max {SWAPp(Tm;Tm, Tn, K, 1), 0}
= (SWAPp(Tm;Tm, Tn, K, 1))+

= SWAP+
p (Tm;Tm, Tn, K, 1), (23)

where max {x, 0} = x+.
Since we know the pricing formula for the payer swap (see 14), we can rewrite the

previous payoff function in the following way

Vp(Tm) =

(
B(Tm, Tm)−B(Tm, Tn)−K

n−1∑
j=m

∆TjB(Tm, Tj+1)

)+

= (1−B(Tm, Tn)−KAm,n(Tm))+

= (Rm,n(Tm)Am,n(Tm)−KAm,n(Tm))+

= Am,n(Tm) (Rm,n(Tm)−K)+ , (24)

where in the last but one equality we have used the formula for swap rate (15). This form
of payoff function is more adequate for establishing the pricing formula for swaptions, since
we can use the Swap Market Model derived in the previous section.
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So the price of the payer swaption at time t < Tm with expiry at Tm, fixed interest rate
K and notional N = 1 is given by the risk-neutral pricing formula

SWAPTIONp(t;Tm, K, 1) =
1

D(t)
Ẽ [D(Tm)Vp(Tm) |F(t)]

=
1

D(t)
Ẽ
[
D(Tm)Am,n(Tm)(Rm,n(Tm)−K)+ |F(t)]

=
D(0)Am,n(0)

D(t)Am,n(t)
Am,n(t)Ẽ

[
D(Tm)Am,n(Tm)

D(0)Am,n(0)
(Rm,n(Tm)−K)+

∣∣∣∣F(t)

]
= Am,n(t)

1

Z̃SW (t)
Ẽ
[
Z̃SW (Tm)(Rm,n(Tm)−K)+

∣∣∣F(t)
]

= Am,n(t)ẼSW
[
(Rm,n(Tm)−K)+

∣∣F(t)
]
, (25)

where in the last two equalities we have used the Radon-Nikodým derivative process
{Z̃SW (t); t ≥ 0} in (64) to transfer from the risk-neutral probability measure P̃ to the

forward swap-rate probability measure P̃ SW under which the swap rate {Rm,n(t); t ≥ 0} is
a martingale and has a lognormal distribution. From here on, we have

SWAPTIONp(t;Tm, K, 1) = Am,n(t)ẼSW
[
Rm,n(Tm)χ{Rm,n(Tm)>K}

∣∣F(t)
]

−KAm,n(t)P̃ SW ({ω;Rm,n(Tm) > K}) . (26)

After calculating the first and the second term (see Appendix A.3) in (26) we arrive at
Black-Scholes formula for the payer swaption at time t < Tm (forward-starting payer swap-
tion) with expiration at time Tm, fixed rate K and notional N = 1

SWAPTIONp(t;Tm, K, 1) = Am,n(t) [Rm,n(t)Φ (d+(Rm,n(t), τ))−KΦ (d−(Rm,n(t), τ))] ,
(27)

where

Φ(y) =

∫ y

−∞

1√
2π

exp

{
−1

2
z2

}
dz =

∫ ∞
−y

1√
2π

exp

{
−1

2
z2

}
dz

d±(Rm,n(t), τ) =
1

σm,n
√
τ

[
ln
Rm,n(t)

K
± 1

2
σ2
m,nτ

]
,

σm,n =

√
1

τ

∫ Tm

t

||γm,n(s)k||2ds,

τ = Tm − t.
The prices of swaption are quoted in terms of σm,n quantities, which are so-called Black
swaption volatilities, where m specifies the expiration of the option on a swap and n −m
is the length (or tenor) of the swap contract.
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3 Construction of the term structure of volatility

In this section, we show one possible way how to construct the term structure of (caplet)
volatilities in CZK. And from those, we wll go on to construct the swaption volatilities
(obviously again in CZK).

We will start with linearly interpolated swap-rate curve data from January 3rd, 2011 to
August 12th, 2015 (see Table 2). Each row in Table 2 corresponds to the current swap-rate
curve with tenor ranging from 1 year to 30 years.

Table 2: Swap-rate curve data in CZK (absolute values)

Date 1Y 2Y 3Y . . . 28Y 29Y 30Y
3.1.2011 0,01450 0,02060 0,02315 . . . 0,03449 0,03430 0,03410
4.1.2011 0,01490 0,02020 0,02250 . . . 0,03359 0,03325 0,03290
5.1.2011 0,01460 0,02030 0,02250 . . . 0,03350 0,03320 0,03290
6.1.2011 0,01460 0,02045 0,02280 . . . 0,03414 0,03391 0,03368
7.1.2011 0,01460 0,02060 0,02270 . . . 0,03382 0,03359 0,03335

10.1.2011 0,01490 0,02090 0,02320 . . . 0,03382 0,03357 0,03333
11.1.2011 0,01490 0,02125 0,02350 . . . 0,03415 0,03405 0,03395
12.1.2011 0,01540 0,02200 0,02430 . . . 0,03504 0,03490 0,03475
13.1.2011 0,01540 0,02210 0,02470 . . . 0,03507 0,03501 0,03495

. . . . . . . . . . . . . . . . . . . . . . . .
5.8.2015 0,00255 0,00340 0,00428 . . . 0,01659 0,01677 0,01695
6.8.2015 0,00255 0,00343 0,00428 . . . 0,01658 0,01677 0,01695
7.8.2015 0,00235 0,00330 0,00415 . . . 0,01585 0,01585 0,01585

10.8.2015 0,00250 0,00335 0,00418 . . . 0,01590 0,01590 0,01590
11.8.2015 0,00245 0,00330 0,00408 . . . 0,01597 0,01606 0,01615
12.8.2015 0,00245 0,00330 0,00405 . . . 0,01583 0,01594 0,01605

It is important to link these values to the denotation that we have established earlier
in the paper. So, for example the first value 0.00245 on the swap-rate curve for August
12th, 2015 corresponds to R0,1(0), 0.0033 corresponds to R0,2(0) and so on. One must not
mix rates such as R0,1(t) and R0,2(t) up with for example rates such as R1,2(t) and R2,4(t).

For the reasons explained below, we will need to bootstrap zero-coupon bond prices
from these swap rates. This should not be complicated since from (15) we have

R0,n(0) =
1−B(0, Tn)∑n−1

j=0 ∆TjB(0, Tj+1)
(28)

Pluggin n = 1 in (28) gives (since ∆Tj = 1)

B(0, T1) =
1

1 +R0,1(0)
, (29)
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for n = 2 we get

B(0, T2) =
1−R0,2(0)B(0, T1)

1 +R0,2(0)
, (30)

for n = 3 we get

B(0, T3) =
1−R0,3(0)(B(0, T1) +B(0, T2))

1 +R0,3(0)
, (31)

and so on. In general, we get the following bootstrap formula

B(0, Tn) =


1

1 + ∆T0R0,1(0)
, n = 1,

1−R0,n(0)
∑n−2

j=0 ∆TjB(0, Tj+1)

1 + ∆Tn−1R0,n(0)
, n > 1.

(32)

Applying (32) to each row of the swap-rate curve data yields zero-coupon bond prices as
shown in Table 3.

Table 3: Bootstrapped zero-coupon bond price data in CZK

Date 1Y 2Y 3Y . . . 28Y 29Y 30Y
3.1.2011 0,98571 0,95992 0,93335 . . . 0,38664 0,37718 0,36819
4.1.2011 0,98532 0,96069 0,93517 . . . 0,39874 0,39190 0,38554
5.1.2011 0,98561 0,96049 0,93517 . . . 0,39765 0,39009 0,38300
6.1.2011 0,98561 0,96021 0,93433 . . . 0,38720 0,37850 0,37024
7.1.2011 0,98561 0,95992 0,93462 . . . 0,39152 0,38291 0,37474

10.1.2011 0,98532 0,95936 0,93323 . . . 0,39329 0,38475 0,37666
11.1.2011 0,98532 0,95869 0,93240 . . . 0,38742 0,37639 0,36581
12.1.2011 0,98483 0,95727 0,93020 . . . 0,37916 0,36888 0,35904
13.1.2011 0,98483 0,95708 0,92909 . . . 0,37793 0,36617 0,35486

. . . . . . . . . . . . . . . . . . . . . . . .
5.8.2015 0,99746 0,99323 0,98725 . . . 0,62126 0,60697 0,59271
6.8.2015 0,99746 0,99317 0,98725 . . . 0,62119 0,60681 0,59245
7.8.2015 0,99766 0,99343 0,98764 . . . 0,63650 0,62657 0,61679

10.8.2015 0,99751 0,99333 0,98755 . . . 0,63536 0,62541 0,61562
11.8.2015 0,99756 0,99343 0,98785 . . . 0,63332 0,62128 0,60932
12.8.2015 0,99756 0,99343 0,98794 . . . 0,63577 0,62330 0,61090

3.1 Term structure of caplet volatilities

Recall the LIBOR Market Model in (11). To simplify matters, we will consider case k = 1
in the remaining text of this paper. From [1] we know the caplet volatilities are quantities,
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denoted γ̄(Tj), that when plugged into Black-Scholes formula give us the market price of
the caplets. These quantities are defined as

γ̄(Tj) =

√
1

Tj

∫ Tj

0

γ2(t, Tj)dt, j = 1, 2, . . . , n− 1, (33)

where γ(t, Tj) is the volatility of the forward LIBOR rate L(t;Tj, Tj+1).
It is essential to realize that the forward LIBOR rate {L(t;Tj, Tj+1); 0 ≤ t ≤ Tj} is the

stochastic process on the interval t ∈ 〈0, Tj〉 (or variable rate on this interval), while it is
constant on the interval (Tj, Tj+1〉. Therefore the volatility γ(t, Tj) is a non-zero number
only for t ∈ 〈0, Tj〉, otherwise it is zero. For this very reason it is not possible to assume
that quantities γ(t, Tj) can be simply computed or rather estimated by statistical inference
(as the square root of sample variance for example) from observed market values of LIBOR
(or in our case PRIBOR rates) rates1.

Let us assume that the volatility γ(t, Tj) in (33) is constant (but nonzero) on the interval
〈0, Tj〉 and denote it just γj instead of γ(t, Tj). Then, for the caplet volatility we get

γ̄(Tj) = γj, j = 1, 2, . . . , n− 1. (34)

Now, the question remains how do we compute or estimate γj’s when we do not have market
prices of caplets to imply them from. We can make use of the formula for γ(t, Tj) in (10)
that we have arrived at while deriving the LIBOR Market Model. Using the definition for
LIBOR rate in (8) we get the following

γ(t, Tj) =
B(t, Tj)

B(t, Tj)−B(t, Tj+1)
(σ(t, Tj)− σ(t, Tj+1)) (35)

By employing the statistics we can now estimate γj in the following way

γj =
mj(0)

mj(0)−mj+1(0)
(σ̂(Tj)− σ̂(Tj+1)), (36)

where

mj(0) =
1

S

S∑
i=1

BM
i (0, Tj), σ̂(Tj) =

√
ln

(
vj(1)

m2
j(0)

e−2aj(1) + 1

)
. (37)

In (37),S denotes the number of swap-rate curves,BM
i (0, Tj) is the market price of the

Tj-zero-coupon bond bootstrapped from the ith swap-rate curve and

aj(1) = ln
mj(1)

mj(0)
, vj(1) =

1

S − 1

S∑
i=1

(BM
i (1, Tj)−mj(1))2. (38)

1Note that this could be plausible since the change of probability measure does not effect the volatility
but only the drift.
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Notice that in (38) we also need BM
i (1, Tj) zero-coupon bonds. Those can be obtained from

the relation BM(1, Tj) =
BM (0,Tj)

BM (0,1)
. The first estimate in (37) is obvious, whereas the second

is more elaborate and therefore its derivation is moved to the Appendix A.4.
Since (as shown in [2]) the term structure of caplet volatilities at time 0 (meaning

today) is a set of ordered pairs

{(T1, γ(0, T1)) , (T2, γ(0, T2)) , . . . , (Tn, γ(0, Tn))} ,

we have the approximation

{(T1, γ1) , (T2, γ2) , . . . , (Tn, γn)}

shown in Table 4. The corresponding graph, see Figure 4, takes the usual shape as seen in
[1]. Plugging these quantities into Black-Scholes formula for caplet gives us the estimated
today’s market price of interest rate caplet, and also interest-rate cap, see [1] or [2] for
particular pricing formulas.

Table 4: Approximated term structure of caplet volatilities (August 12th, 2015)

Year γj
1 0.625187
2 0.575476
3 0.480692
4 0.413583
5 0.366853
6 0.330823
7 0.294691
8 0.277683
9 0.259092
10 0.261573
15 0.218426
20 0.242764
25 0.207357

3.2 Rebonato’s simple approximation formula

In the previous section, we have shown how to estimate the term structure of caplet
volatilities. In this section, we show that we can go even further and use the previous term
structure in so-called Rebonato’s approximation formula for swaption volatilities (since
the first sketchy derivation was done by Rebonato in [3]) to estimate the term structure of
swaption volatilities.
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Figure 4: Graph of caplet volatilities (August 12th, 2015)

15



Recall the Swap Market Model (21), again with k = 1. In section 2.5, we have found
that the square of the Black swaption volatility takes general form

σ2
m,n =

1

Tm − t

∫ Tm

t

γ2
m,n(s)ds (39)

for the forward-starting swaption. Since we want to compute the today’s Black swaption
volatilities, we simply substitute t = 0, which yields

σ2
m,n =

1

Tm

∫ Tm

0

γ2
m,n(s)ds. (40)

Because the stochastic differential equation for the logarithm of the swap rate is

d lnRm,n(t) =
1

Rm,n(t)
dRm,n(t) +

1

2

(
− 1

R2
m,n(t)

)
d[Rm,n, Rm,n](t)

= γm,n(t)dW̃ SW (t)− 1

2
γ2
m,n(t)dt,

we can immediately see that

σ2
m,n =

1

Tm

∫ Tm

0

γ2
m,n(s)ds =

1

Tm

∫ Tm

0

d[lnRm,n, lnRm,n](s),

or more informally

σ2
m,n =

1

Tm

∫ Tm

0

d(lnRm,n(s))d(lnRm,n(s)). (41)

Further, recall that the swap rate is essentially weighted average of the LIBOR rates, see
(16)

Rm,n(t) =
n−1∑
j=m

αj(t)Lj(t),

where we use shorthand Lj(t) for L(t;Tj, Tj+1) and

αj(t) =
∆TjB(t, Tj+1)∑n−1
j=m ∆TjB(t, Tj+1)

. (42)

The first approximaton is following. We start by freezing all the weights αj’s at time t = 0

Rm,n(t) ≈
n−1∑
j=m

αj(0)Lj(t). (43)
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Brigo in [2] justifies this approximation by the fact that the variability of the αj’s is much
smaller than the variability of the Lj’s. This can be checked both historically and through
simulation of the Lj’s via Monte Carlo.

Taking the stochastic differential of the preceding approximation (43) gives

dRm,n(t) ≈ d

(
n−1∑
j=m

αj(0)Lj(t)

)

=
n−1∑
j=m

αj(0)dLj(t)

=
n−1∑
j=m

αj(0)γj(t)Lj(t)dW̃
Tj+1(t), (44)

where in (44) we have used shorthand γj(t) for γ(t, Tj). Therefore,

(dRm,n(t)) (dRm,n(t)) ≈
n−1∑
i=m

n−1∑
j=m

αi(0)αj(0)γi(t)γj(t)Li(t)Lj(t)ρi,jdt,

where ρi,j is the instantaneous correlation between the ith and jth LIBOR rate. Dividing
this approximation by R2

m,n(t) yields

(d lnRm,n(t)) (d lnRm,n(t)) ≈
n−1∑
i=m

n−1∑
j=m

αi(0)αj(0)γi(t)γj(t)Li(t)Lj(t)ρi,j
R2
m,n(t)

dt.

Next approximation involves freezing all the Lj’s (as was done earlier for the αj’s), which
gives

(d lnRm,n(t)) (d lnRm,n(t)) ≈
n−1∑
i=m

n−1∑
j=m

αi(0)αj(0)Li(0)Lj(0)ρi,j
R2
m,n(0)

γi(t)γj(t)dt. (45)

Putting this approximation back into formula (41) gives us the Rebonato’s approximation
formula for the Black swaption volatility

σm,n ≈ σRm,n, (46)

where

σRm,n =

√√√√ 1

Tm

n−1∑
i=m

n−1∑
j=m

αi(0)αj(0)Li(0)Lj(0)ρi,j
R2
m,n(0)

∫ Tm

0

γi(t)γj(t)dt. (47)

17



3.3 Term structure of swaption volatilities

With the Rebonato’s approximation formula for the Black swaption volatility in (47)
we can approximate the term structure of swaption volatilities. However, before we make
that step, we’ll make further approximation by assuming constant γj’s, which gives us

σRm,n =

√√√√n−1∑
i=m

n−1∑
j=m

αi(0)αj(0)Li(0)Lj(0)γiγjρi,j
R2
m,n(0)

. (48)

Since LIBOR (or in our case PRIBOR) rates are not available for tenors longer than one
year, we can construct them using our bootstrapped zero-coupon bond price data in Table
3 using definition (8). The same goes for swap rates Rm,n(0) (recall that the swap-rate curve
data given in Table 2 are of the form R0,n(0)) using definition (15).

The constructed LIBOR rates are in Table 8. Further according to (16) one has to con-
struct a series of weights αi’s for each Rm,n(0). One such table of weights is in Table 5. Since
the γi’s are collected from the term stucture of caplet volatilities in Table 4, the remaining
quantities to be determined in (48) are instantaneous correlations ρi,j’s. Instantaneous cor-
relations ρi,j’s can be historically estimated from the time series of the previously construc-
ted LIBOR rates. Justification for this can be found in [2]. Excerpt from the historically
estimated correlation matrix is in Table 6.

Table 5: Weights αj’s (August 12th, 2015)

α1(0) α2(0) α3(0) α4(0) α5(0) α6(0) α7(0) α8(0)
R1,2(0) 1
R1,3(0) 0,50138 0,49862
R1,4(0) 0,33549 0,33364 0,33085
R1,5(0) 0,25274 0,25135 0,24925 0,24664
R1,6(0) 0,20325 0,20213 0,20044 0,19835 0,19581
R1,7(0) 0,17036 0,16941 0,16800 0,16624 0,16412 0,16184
R1,8(0) 0,14694 0,14613 0,14491 0,14339 0,14156 0,13960 0,13744
R1,9(0) 0,12945 0,12873 0,12766 0,12632 0,12470 0,12298 0,12107 0,11906

The resulting estimated Black swaption volatilities σRm,n’s in CZK are in Table 7, where
each row corresponds to the maturity of the option and each column to the length of the
underlying swap.

3.4 Pseudo-implied Black swaption of volatilities

The estimated Black swaption volatilities in previous section 3.3 are partly obtained
from historical data. Note that although we use current swap and LIBOR (PRIBOR in
Czech Republic) rates in the estimation, the caplet volatilities entering the formula and the
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Table 6: Excerpt from the historically estimated correlation matrix (in CZK, from January
3rd, 2011 to August 12th, 2015)

L1(0) L2(0) L3(0) . . . L18(0) L19(0) L20(0)
L1(0) 1,000000 0,973112 0,913039 . . . 0,527974 0,480488 0,431754
L2(0) 0,973112 1,000000 0,974224 . . . 0,630941 0,584788 0,536882
L3(0) 0,913039 0,974224 1,000000 . . . 0,722696 0,679252 0,633578
L4(0) 0,859659 0,934789 0,983018 . . . 0,766321 0,724063 0,679368

. . . . . . . . . . . . . . . . . . . . . . . .
L17(0) 0,573491 0,674621 0,763205 . . . 0,997668 0,990775 0,979600
L18(0) 0,527974 0,630941 0,722696 . . . 1,000000 0,997713 0,991031
L19(0) 0,480488 0,584788 0,679252 . . . 0,997713 1,000000 0,997796
L20(0) 0,431754 0,536882 0,633578 . . . 0,991031 0,997796 1,000000

Table 7: Term structure of swaption volatilities in CZK (August 12th, 2015)

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y
1Y 0,6252 0,6268 0,5349 0,4473 0,4390 0,4141 0,3862 0,3639 0,3427
2Y 0,5755 0,5153 0,4679 0,4305 0,4020 0,3752 0,3542 0,3355 0,3220
3Y 0,4807 0,4416 0,4094 0,3843 0,3561 0,3410 0,3239 0,3118 0,3022
4Y 0,4136 0,3868 0,3650 0,3429 0,3259 0,3105 0,3001 0,2917 0,2935
5Y 0,3669 0,3473 0,3267 0,3114 0,2975 0,2896 0,2816 0,2861 0,2661
6Y 0,3308 0,2932 0,2967 0,2843 0,2774 0,2718 0,2792 0,2582 0,2415
7Y 0,2947 0,2832 0,2724 0,2676 0,2633 0,2722 0,2480 0,2335 0,2296
8Y 0,2777 0,2648 0,2616 0,2581 0,2691 0,2415 0,2269 0,2236 0,2201
9Y 0,2591 0,2569 0,2538 0,2680 0,2354 0,2202 0,2149 0,2144 0,2110
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instantaneous correlations are obtained from historical discount curves and LIBOR rates re-
spectively. Therefore one cannot expect that these estimated volatilities (both caplet volat-
ilities and Black swaption volatilities in Tables 4 and 7 respectively) will match the implied
market volatilities. Comparing estimated Black swaption volatilities (computed with our
method) in EUR with market-implied Black swaption volatilities in EUR (collected from
Bloomberg), see Tables 9 and 10, we can see that market-implied Black swaption volatilities
in general tent to be higher.

Table 9: Estimated Black swaption volatilities in EUR (August 12th, 2015)

3Y 5Y 7Y 10Y
1Y 0,6284 0,4704 0,3935 0,3354
5Y 0,3312 0,3005 0,2927 0,2797

10Y 0,2733 0,2643 0,2620 0,2555

Table 10: Market-implied Black swaption volatilities in EUR (August 12th, 2015)

3Y 5Y 7Y 10Y
1Y 1,3212 0,7159 0,4826 0,3904
5Y 0,5809 0,4671 0,4024 0,3736

10Y 0,4763 0,4173 0,3865 0,3807

Table 11: Ratios cm,n’s (August 12th, 2015)

3Y 5Y 7Y 10Y
1Y 2,1025 1,5219 1,2264 1,1640
5Y 1,7541 1,5545 1,3750 1,3357

10Y 1,7425 1,5790 1,4753 1,4902

If we denote by cm,n the ratio of the market-implied Black swaption volatility σm,n and
the corresponding estimated Black swaption volatility σRm,n, i.e.

cm,n =
σm,n
σRm,n

, (49)

we find out that cm,n’s are for most combinations of m and n higher than one, see Table
11. Obviously, if the ratios cm,n’s were equal exactly one then we would have σm,n = σRm,n,
which does not necessarily hold since the approximation in (46). In approximating σm,n’s
by σRm,n’s we have lost some information on the current market and haven’t been able to
obtain it back even by substituting historical estimations for the market implied entities.

Unfortunately, cm,n’s are not available to us when there is no market for swaptions, but
we can still compute σRm,n’s, as it was shown in the last section. If we assume that the cm,n’s
computed from EUR quotes σm,n’s and σRm,n’s are the same or at least very similar for any
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other European currency then by multiplying σRm,n computed for a particular currency by
cm,n we obtain σ∗m,n., i.e.

σ∗m,n = σRm,n · cm,n, (50)

where we call σ∗m,n pseudo-implied Black swaption volatility2. Note that the product on the
right-hand side of (50) holds for market-implied Black swaption volatilities if there is a mar-
ket for swaptions. Also note that the left-hand side of (50) is in the correct currency, since
cm,n on the right-hand side is a dimensionless number (meaning it has no units). For ex-
ample pseudo-implied Black swaption volatilities in CZK are in Table 12.

Table 12: Pseudo-implied Black swaption volatilities in CZK (August 12th, 2015)

3Y 5Y 7Y 10Y
1Y 1,1247 0,6681 0,4736 0,3867
5Y 0,5730 0,4624 0,3872 0,3365

10Y 0,4725 0,3498 0,3156 0,3039

3.4.1 Time-inhomogeneity of cm,n

It is natural to ask, whether we have to recalculate cm,n each time we want to calculate
pseudo-implied Black swaption volatilities σ∗’s. One way to resolve the time dependency
of cm,n is to look at the history of these values. If we take the Table 11 apart according to
the option maturity and swap length and look at the time series of these components from
June 6th, 2013 to August 8th, 2015, we obtain following three figures in Figure 5. All three
figures indicates time dependence of cm,n.

3.4.2 n-inhomogeneity of cm,n

Looking at the Figure 5, one may notice the similar pattern of swap lengths across
all swaption maturities. This feature can be taken advantage of, particularly in recent
days, when cm,n’s are very close to each other for given swaption maturities. Of course
this is not always the case, as history indicates. But if we take simple average from cm,n’s
across all swap lengths for each swaption maturity, we obtain cm’s Table 13. Using this ap-
proach the resulting pseudo-implied Black swaption volatilities in CZK are then in Table
3.4.2. As mentioned, this approach is not always appropriate, since cm,n depends on n, but
could be useful at times.

3.5 Pseudo-implied caplet volatilities

Here, we briefly discuss the computation of pseudo-implied caplet volatilities. The ap-
proach is much more simpler then with the pseudo-implied Black swaption volatilities, since

2The reason for this name is the same as for pseudo-random generators.
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Figure 5: Ratios cm,n for swaption with various maturities and swap lengths
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Table 13: Ratios cm

m cm
1Y 1,5037
5Y 1,5048

10Y 1,5717

Table 14: Pseudo-implied Black swaption volatilities in CZK (August 12th, 2015)

3Y 5Y 7Y 10Y
1Y 0,8043 0,6601 0,5807 0,4996
5Y 0,4916 0,4476 0,4238 0,3791

10Y 0,4262 0,3482 0,3363 0,3206

we already have the semi-historical part from equation (36). Therefore applying the pro-
cedure described in the previous section (of course, instead of market implied swaption
volatilities we use market implied caplet volatilities obtained from market implied cap
volatilities by bootstrapping) gives us the desired pseudo-implied caplet volatilities.

4 Application to pricing swaptions

The following are numerical examples of swaption prices using either market-implied
Black swaption volatilities (Table 10) or pseudo-implied Black swaption volatilities (Table
12). Note, that all the other arguments that are passed to the Black-Scholes formula (27)
are in CZK (this means that Am,n is computed from Czech zero-coupon bond prices and
we are using Czech swap-rate curve to compute Rm,n).In Table 15 we have ATM prices of
a payer swaption with maturities 1Y, 3Y and 10Y, swap lengths 3Y, 5Y, 7Y and 10Y and
nominal 1 CZK using market-implied Black swaption volatilities from Table 10, whereas

Table 15: ATM prices of a payer swaption (August 12th, 2015) based on Table 10

3Y 5Y 7Y 10Y
1Y 0,00877 0,01133 0,01304 0,01822
5Y 0,01949 0,02882 0,03750 0,05272

10Y 0,02035 0,04440 0,05637 0,07853

in Table 16 we have used pseudo-implied Black swaption volatilities from Table 12. The
relative differences of the ATM prices of this payer swaption are shown in Table 17. They
are computed as a difference between a particular element in Table 15 and the same element
in Table 16 divided by the same element in Table 16.

One can see, that if for example an insurance company used our approach in pricing
its products in CZK, in which embedded swaptions are present, it would save money in
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Table 16: ATM prices of a payer swaption (August 12th, 2015) based on Table 12

3Y 5Y 7Y 10Y
1Y 0,00761 0,01060 0,01280 0,01805
5Y 0,01926 0,02855 0,03617 0,04773

10Y 0,02022 0,03798 0,04696 0,06402

Table 17: Relative differences (in %, August 12th, 2015)

3Y 5Y 7Y 10Y
1Y 15,262% 6,864% 1,860% 0,948%
5Y 1,199% 0,927% 3,662% 10,446%

10Y 0,659% 16,881% 20,038% 22,650%

constructing its reserves, especially for products with longer maturity of the option and the
swap length.

5 Conclusion

This paper has provided an approximation procedure for constructing a term structure
of volatilities for countries where there is no interest-rate derivative market (we chose Czech
Republic). This procedure is quite simple, in that it only uses the term structure of interest
rates. Also note, that it uses a few approximations that might be far from permissible in
relatively volatile markets. The resulting approximation formulas for each term structure
are important to determine the approximated market price (in given currency) of many
interest-rate derivatives.
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6 Abbreviations and Notation

• LMM = LIBOR Market Model;

• HJM = Heath-Jarrow-Morton Model;

• SMM = Swap Market Model;

• SDE = Stochastic differential equation;

• UoC = Unit of currency;

• B(t, T ): Bond price at time t with maturity T ;

• r(t): Instantaneous spot interest rate at time t;

• P : Physical \Objective\Real-World probability measure;

• W (t)k: k-dimensional Brownian motion under the Physical probability measure, i.e.

W (t)k = (W1(t), W2(t), . . . , Wk(t))
T ;

• P̃ : Risk-neutral probability measure;

• W̃ (t)k: k-dimensional Brownian motion under the Risk-neutral probability measure, i.e.

W̃ (t)k = (W̃1(t), W̃2(t), . . . , W̃k(t))
T ;

• L(t;S, T ): forward LIBOR rate at time t for borrowing\investing over the interval
(S, T );

• P̃ Tj+1 :Tj+1-forward probability measure, i.e.probability measure associated with the
numeraire B(·, Tj+1);

• W̃ Tj+1(t)k: k-dimensional Brownian motion under the Tj+1-forward probability meas-
ure, i.e.

W̃ Tj+1(t)k = (W̃
Tj+1

1 (t), W̃
Tj+1

2 (t), . . . , W̃
Tj+1

k (t))T ;

• D(t): Stochastic discount factor at time t, i.e.

D(t) = exp

{
−
∫ t

0

r(s)ds

}
;

• Rm,n(t): Forward swap rate at time t for a swap with first reset date Tm and payment
dates Tm+1, Tm+2, . . . , Tn;
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• P̃ SW : forward swap-rate probability measure;

• W̃ SW (t)k: k-dimensional Brownian motion under the forward swap-rate probability
measure, i.e.

W̃ SW (t)k = (W̃ SW
1 (t), W̃ SW

2 (t), . . . , W̃ SW
k (t))T ;

• || · ||: Euclidean norm, i.e. for example

||σ(t, Tj+1)k|| =

√√√√ k∑
i=1

σ2
i (t, Tj+1)

• [X,X](t): quadratic variation of stochastic process {X(t); t ≥ 0};

• [X, Y ](t): cross variation of stochastic processes {X(t); t ≥ 0} and {Y (t); t ≥ 0};

A Appendix

A.1 LIBOR Market Model

Applying the Itô-Doeblin formula to the definition of the forward LIBOR in (8) gives
us

dL(t;Tj, Tj+1) =
1

∆Tj
d

(
B(t, Tj)

B(t, Tj+1)

)
=

1

∆Tj
[B(t, Tj)dB

−1(t, Tj+1) +B−1(t, Tj+1)dB(t, Tj) + d[B,B−1](t)], (51)

where from (7) we have

dB−1(t, Tj+1) = − 1

B2(t, Tj+1)
dB(t, Tj+1) +

1

2

(
2

B3(t, Tj+1)

)
d[B,B](t)

= B−1(t, Tj+1)(||σ(t, Tj+1)k||2 − r(t))dt−B−1(t, Tj+1)σT (t, Tj+1)kdW̃ (t)k,
(52)

and

d[B,B−1](t) = −B(t, Tj)B
−1(t, Tj+1)σT (t, Tj)kσ(t, Tj+1)kdt. (53)

Putting (52) and (53) back into (51) gives us

dL(t;Tj, Tj+1) =
1

∆Tj

B(t, Tj)

B(t, Tj+1)

(
||σ(t, Tj+1)k||2 − σT (t, Tj)kσ(t, Tj+1)k

)
dt

+
1

∆Tj

B(t, Tj)

B(t, Tj+1)

(
σT (t, Tj)k − σT (t, Tj+1)k

)
dW̃ (t)k. (54)
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Now, since the discounted price of Tj-zero-coupon bond {D(t)B(t, Tj); t ≤ Tj} is P̃ -

martingale, so is the stochastic process { D(t)B(t,Tj)

D(t)B(t,Tj+1)
; t ≤ Tj+1} but under different probab-

ility measure. We denote this new probability measure P̃ Tj+1 and define it

P̃ Tj+1(A) =

∫
A

ZTj+1(Tj+1)dP̃ (ω)

=

∫
A

D(Tj+1)B(Tj+1, Tj+1)

D(0)B(0, Tj+1)
dP̃ (ω)

=
1

B(0, Tj+1)

∫
A

D(Tj+1)dP̃ (ω),

for all A ∈ F(Tj+1).
One can see that by solving stochastic differetial equation for {D(t)B(t, Tj+1); t ≤ Tj+1}

we will get the explicit form for the Radon-Nikodým derivative process {Z̃Tj+1(t); t ≥ 0}

Z̃Tj+1(t) =
dP̃ Tj+1(ω)

dP̃ (ω)
|F(t) =

D(t)B(t, Tj+1)

D(0)B(0, Tj+1)

= exp

{∫ t

0

σT (s, Tj+1)kdW̃ (s)k −
1

2

∫ t

0

||σ(s, Tj+1)k||2ds

}
.

Applying multidimensional Girsanov theorem gives us k-dimensional stochastic process
{W̃ Tj+1(t)k; t ≥ 0} defined

W̃ Tj+1(t)k = W̃ (t)k −
∫ t

0

σ(s, Tj+1)kds, (55)

which is k-dimensional Brownian motion under the new probability measure P̃ Tj+1 . Using
this new probability measure (sometimes called Tj+1-forward measure), we can rewrite the
equation (54) as

dL(t;Tj, Tj+1) =
1

∆Tj

B(t, Tj)

B(t, Tj+1)
(σT (t, Tj)k − σT (t, Tj+1)k)dW̃

Tj+1(t)k, (56)

and finally using the definition of the forward LIBOR in (8) gives us

dL(t;Tj, Tj+1) = L(t;Tj, Tj+1)
1 + ∆TjL(t;Tj, Tj+1)

∆TjL(t;Tj, Tj+1)
(σT (t, Tj)k − σT (t, Tj+1)k)dW̃

Tj+1(t)k.

(57)

28



A.2 Swap Market Model

dRm,n(t) = d

(
n−1∑
j=m

αj(t)L(t;Tj, Tj+1)

)

=
n−1∑
j=m

(αj(t)dL(t;Tj, Tj+1) + L(t;Tj, Tj+1)dαj(t) + d[αj, L](t)), (58)

where for the stochastic weight {αj(t); t ≥ 0} we have (17), which we further simplify by
writing

αj(t) =
∆TjB(t, Tj+1)

Am,n(t)
, (59)

where we put

Am,n(t) =
n−1∑
j=m

∆TjB(t, Tj+1), (60)

which is essentially the price at time t < Tm of the unit cash-flow occuring on the interval
〈Tm+1, Tn〉. The stochastic differential for {Am,n(t); t ≥ 0} is then

dAm,n(t) =
n−1∑
j=m

∆TjdB(t, Tj+1)

= r(t)Am,n(t)dt+
n−1∑
j=m

∆TjB(t, Tj+1)σT (t, Tj+1)kdW̃ (t)k

= r(t)Am,n(t)dt+ Am,n(t)
n−1∑
j=m

∆TjB(t, Tj+1)

Am,n(t)
σT (t, Tj+1)kdW̃ (t)k

= r(t)Am,n(t)dt+ Am,n(t)
n−1∑
j=m

αj(t)σ
T (t, Tj+1)kdW̃ (t)k

= r(t)Am,n(t)dt+ Am,n(t)σTA(t)kdW̃ (t)k,

where we denoted

σA(t)k =
n−1∑
j=m

αj(t)σ(t, Tj+1)k (61)

as the vector of volatility terms of {Am,n(t); t ≥ 0}.
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The stochastic differential for {A−1
m,n(t); t ≥ 0} is then easily derived

dA−1
m,n(t) = A−1

m,n(t)(||σA(t)k||2 − r(t))dt+ A−1
m,n(t)σTA(t)kdW̃ (t)k, (62)

and thus for {αj(t); t ≥ 0} we have

dαj(t) = ∆Tjd
(
B(t, Tj+1)A−1

m,n(t)
)

= . . .

= αj(t)
(
||σA(t)k||2 − σTA(t)kσ(t, Tj+1)k

)
dt

+ αj(t)
(
σT (t, Tj+1)k − σTA(t)k

)
dW̃ (t)k. (63)

At this point we can define a new probability measure, because we can take advant-
age of the fact that both {D(t)B(t, Tj+1); t ≤ Tj+1} and {D(t)Am,n(t); t ≥ 0} are P̃ -
martinagles. Thus also {αj(t); t ≥ 0} is a martingale but under different probability meas-

ure, we denote it P̃ SW and call it forward swap-rate probability measure. Its definition is

P̃ SW (A) =

∫
A

Z̃SW (Tm)dP̃ (ω)

=

∫
A

D(Tm)Am,n(Tm)

D(0)Am,n(0)
dP̃ (ω)

=
1

Am,n(0)

∫
A

D(Tm)Am,n(Tm)dP̃ (ω), (64)

for all A ∈ F(Tm).

The corresponding Radon-Nikodým derivative process {Z̃SW (t); t ≥ 0} can be derived
as the solution to the stochastic differetial equation for {D(t)Am,n(t); t ≥ 0}. Applying mul-

tivariate Girsanov theorem gives us new k-dimensional stochastic process {W̃ SW (t)k; t ≥ 0}
defined

W̃ SW (t)k = W̃ (t)k −
∫ t

0

σA(s)kds, (65)

which is k-dimensional Brownian motion under the forward swap-rate probability measure
P̃ SW . Therefore the last equality (63) can be rewritten as

dαj(t) = αj(t)
(
σT (t, Tj+1)k − σTA(t)k

)
dW̃ SW (t)k. (66)

Next, the differential of covariation of {L(t;Tj, Tj+1); t ≤ Tj} and {αj(t); t ≥ 0} is

d[αj, L](t) = L(t;Tj, Tj+1)αj(t)γ
T (t, Tj)k (σ(t, Tj+1)k − σA(t)k) dt. (67)

Putting (67), (66) and (11) under P̃ into (58) gives us
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dRm,n(t) =−
n−1∑
j=m

αj(t)L(t;Tj, Tj+1)γT (t, Tj)kσ(t, Tj+1)kdt

+
n−1∑
j=m

αj(t)L(t;Tj, Tj+1)γT (t, Tj)kdW̃ (t)k

+
n−1∑
j=m

αj(t)L(t, Tj, Tj+1)
(
σT (t, Tj+1)k − σTA(t)k

)
dW̃ SW (t)k

+
n−1∑
j=m

αj(t)L(t;Tj, Tj+1)γT (t, Tj)k(σ(t, Tj+1)k − σA(t)k)dt

=
n−1∑
j=m

αj(t)L(t;Tj, Tj+1)γT (t, Tj)k

(
−σA(t)kdt+ dW̃ (t)k

)
+

n−1∑
j=m

αj(t)L(t;Tj, Tj+1)
(
σT (t, Tj+1)k − σTA(t)k

)
dW̃ SW (t)k

=
n−1∑
j=m

αj(t)L(t;Tj, Tj+1)
(
σT (t, Tj+1)k − σTA(t)k + γT (t, Tj)k

)
dW̃ SW (t)k

=Rm,n(t)
n−1∑
j=m

αj(t)L(t;Tj, Tj+1)

Rm,n(t)

(
σT (t, Tj+1)k − σTA(t)k + γT (t, Tj)k

)
dW̃ SW (t)k.

A.3 European swaption

To calculate the first term in (26), we need to solve the Swap Market Model (21). Applying
Itô-Doeblin formula to {lnRm,n(t); t ≥ 0} and integrating over the interval 〈t, Tm〉 gives us

Rm,n(Tm) = Rm,n(t) exp

{∫ Tm

t

γTm,n(s)kdW̃
SW (s)k −

1

2

∫ Tm

t

||γm,n(s)k||2ds

}
. (68)

Since Rm,n(t) is F(t)-measurable random variable and the exponential function on the
right side of (68) does not depend on the σ-algebra F(t), we can rewrite the conditional
expactation in (26)

ẼSW
[
Rm,n(t) exp

{∫ Tm

t

γTm,n(s)kdW̃
SW (s)k −

1

2

∫ Tm

t

||γm,n(s)k||2ds

}
χ{Rm,n(Tm)>K}

∣∣∣∣F(t)

]
as the unconditional one

ẼSW
(
x exp

{∫ Tm

t

γTm,n(s)kdW̃
SW (s)k −

1

2

∫ Tm

t

||γm,n(s)k||2ds

}
χ{Rm,n(Tm)>K}

)
, (69)
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where we put x instead of Rm,n(t).
Further, since

ẼSW
[∫ Tm

t

γTm,n(s)kdW̃
SW (s)k

∣∣∣∣F(t)

]
= 0

D̃SW

[∫ Tm

t

γTm,n(s)kdW̃
SW (s)k

∣∣∣∣F(t)

]
=

∫ Tm

t

||γm,n(s)k||2ds,

putting

σm,n =

√
1

(Tm − t)

∫ Tm

t

||γm,n(s)k||2ds (70)

we have the random variable

Z =

∫ Tm
t

γTm,n(s)kdW̃
SW (s)k

σm,n
√
Tm − t

∼ N(0; 1),

and therefore ∫ Tm

t

γTm,n(s)kdW̃
SW (s)k = Zσm,n

√
Tm − t.

The last unconditional expectation (69) can be thus further simplified

ẼSW
(
x exp

{
σm,n

√
Tm − tZ −

1

2
σ2
m,n(Tm − t)

}
χ{Rm,n(Tm)>K}

)
= ẼSW

(
x exp

{
σm,n

√
Tm − tZ −

1

2
σ2
m,n(Tm − t)

}
χ{Z>c}

)
, (71)

where we put

c =
1

σm,n
√
Tm − t

[
ln
K

x
+

1

2
σ2
m,n(Tm − t)

]
.

32



This last expectation (71) can be easily evaluated

ẼSW
(
x exp

{
σm,n

√
Tm − tZ −

1

2
σ2
m,n(Tm − t)

}
χ{Z>c}

)
= x

∫
Ω

exp

{
σm,n

√
Tm − tZ(ω)− 1

2
σ2
m,n(Tm − t)

}
χ{ω;Z(ω)>c}(ω)dP̃ SW (ω)

= x

∫
Ω

exp

{
σm,n

√
Tm − tZ(ω)− 1

2
σ2
m,n(Tm − t)

}
χ(c,∞)(Z(ω))dP̃ SW (ω)

= x

∫
R

exp

{
σm,n

√
Tm − tz −

1

2
σ2
m,n(Tm − t)

}
χ(c,∞)(z)dP̃ SW

Z (z)

= x

∫ ∞
c

exp

{
σm,n

√
Tm − tz −

1

2
σ2
m,n(Tm − t)

}
1√
2π

exp

{
−1

2
z2

}
dz

= . . .

= x · Φ
(
−c+ σm,n

√
Tm − t

)
, (72)

where

Φ(y) =

∫ y

−∞

1√
2π

exp

{
−1

2
z2

}
dz =

∫ ∞
−y

1√
2π

exp

{
−1

2
z2

}
dz

is the distribution function of the normal variable with mean zero and standard deviation
one.

Putting back Rm,n(t) in place of x, we get

ẼSW
[
Rm,n(Tm)χ{Rm,n(Tm)>K}

∣∣F(t)
]

= Rm,n(t)Φ
(
−c+ σm,n

√
Tm − t

)
. (73)

The second term in (26) is quite easy to evaluate

P̃ SW ({ω;Rm,n(Tm) > K}) = P̃ SW ({ω;Z(ω) > c})

=

∫
{ω;Z(ω)>c}

dP̃ SW (ω)

=

∫
Ω

χ{ω;Z(ω)>c}(ω)dP̃ SW (ω)

=

∫
Ω

χ(c,∞)(Z(ω))dP̃ SW (ω)

=

∫
R
χ(c,∞)(z)dP̃ SW

Z (z)

=

∫ ∞
c

1√
2π

exp

{
−1

2
z2

}
dz

= Φ (−c) . (74)
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Putting (72) and (74) back into (26) gives us

SWAPTIONp(t;Tm, K, 1) = Am,n(t)Rm,n(t)Φ
(
−c+ σm,n

√
Tm − t

)
−KAm,n(t)Φ (−c) .

(75)

Finally, let us put

τ = Tm − t,

−c =
1

σm,n
√
Tm − t

[
ln

K

Rm,n(t)
+

1

2
σ2
m,n(Tm − t)

]
=

1

σm,n
√
τ

[
ln
Rm,n(t)

K
− 1

2
σ2
m,nτ

]
= d−(Rm,n(t), τ),

−c+ σm,n
√
Tm − t =

1

σm,n
√
τ

[
ln
Rm,n(t)

K
+

1

2
σ2
m,nτ

]
= d+(Rm,n(t), τ).

So the Black-Scholes formula for the payer swaption at time t < Tm (forward-starting payer
swaption) with expiration at time Tm, fixed rate K and notional N = 1 is

SWAPTIONp(t;Tm, K, 1) = Am,n(t)Rm,n(t)Φ (d+(Rm,n(t), τ))−KAm,n(t)Φ (d−(Rm,n(t), τ)) ,

where

d±(Rm,n(t), τ) =
1

σm,n
√
τ

[
ln
Rm,n(t)

K
± 1

2
σ2
m,nτ

]
,

σm,n =

√
1

τ

∫ Tm

t

||γm,n(s)k||2ds,

τ = Tm − t.

A.4 Term structure of caplet volatilities

Since γj in (36) does not depend on t, neither does σ in the same equation. Thus we can
rewrite the stochastic differential for B(t, Tj) in (1), after dropping the subscript k (since
k = 1), in the following way

dB(t, Tj) = µ(t, Tj)B(t, Tj)dt+B(t, Tj)σ(Tj)dW (t). (76)

Solving this stochastic differential equation gives

B(t, Tj) = B(0, Tj)e
X(t,Tj), (77)
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where

X(t, Tj) =

∫ t

0

µ(s, Tj)ds−
1

2
σ2(Tj)t+ σ(Tj)

√
tZ,

= aj(t)−
1

2
σ2(Tj)t+ σ(Tj)

√
tZ, Z ∼ N [0; 1],

where we put aj(t) =
∫ t

0
µ(s, Tj)ds. Therefore X(t, Tj) ∼ N [aj(t)− 1

2
σ2(Tj)t;σ

2(Tj)t] and
we have

E(B(t, Tj)) = B(0, Tj)e
aj(t), (78)

D(B(t, Tj)) = B2(0, Tj)
(
eσ

2(Tj)t − 1
)
e2aj(t). (79)

Using the moment method we get

mj(t) = B(0, Tj)e
aj(t), (80)

vj(t) = B2(0, Tj)
(
eσ

2(Tj)t − 1
)
e2aj(t), (81)

where

mj(t) =
1

S

S∑
i=1

Bi(t, Tj),

vj(t) =
1

S − 1

S∑
i=1

(Bi(t, Tj)−mj(t))
2.

After some algebra, we obtain estimates

aj(t) = ln
mj(t)

B(0, Tj)
, (82)

σ(Tj) =

[
1

t
ln

(
vj(t)

B2(0, Tj)
e−2aj(t) + 1

)] 1
2

(83)

Although we are free to choose t and calculate the corresponding Bi(t, Tj) from the rela-

tionship Bi(t, Tj) =
Bi(0,Tj)

Bi(0,t)
, it is safer to put t = 1, since it is the closest to the present

time.
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