#### A cookbook, not a panacea, for claims reserving

Rezervovacia kuchárka (GLM ako aperitív, hlavné menu po bayesovsky, GEE ako digestív)

#### Michal Pešta

#### Charles University in Prague

Faculty of Mathematics and Physics

Actuarial Seminar, Prague

12 October 2012

#### Overview

- Chain ladder models
- GLM in stochastic reserving
- Nonparametric smoothing models in reserving
- Bayesian reserving models
- GEE in stochastic reserving

#### • Support:

Czech Science Foundation project "DYME Dynamic Models in Economics" No. P402/12/G091

### Terminology

- $X_{i,j}$  ... claim amounts in development year j with accident year i
- $X_{i,j}$  stands for the <u>incremental claims</u> in accident year *i* made in accounting year i + j
- n ... current year corresponds to the most recent accident year and development period
- Our data history consists of <u>right-angled isosceles triangles</u>  $X_{i,j}$ , where i = 1, ..., n and j = 1, ..., n + 1 i

# Run-Off (incremental) triangle

| Accident | Development year $j$ |             |               |             |                |
|----------|----------------------|-------------|---------------|-------------|----------------|
| year i   | 1                    | 2           |               | n-1         | $\overline{n}$ |
| 1        | $X_{1,1}$            | $X_{1,2}$   | •••           | $X_{1,n-1}$ | $X_{1,n}$      |
| 2        | $X_{2,1}$            | $X_{2,2}$   |               | $X_{2,n-1}$ |                |
|          |                      |             |               |             |                |
|          | ÷                    |             | $X_{i,n+1-i}$ |             |                |
| n-1      | $X_{n-1,1}$          | $X_{n-1,2}$ |               |             |                |
| n        | $X_{n,1}$            |             |               |             |                |

#### Notation

-  $C_{i,j}$  ... cumulative payments in origin year i after j development periods

$$C_{i,j} = \sum_{k=1}^{j} X_{i,k}$$

- $C_{i,j}$  ... a random variable of which we have an observation if  $i+j \leq n+1$
- $\underline{Aim}$  is to estimate the ultimate claims amount  $C_{i,n}$ and the outstanding claims reserve

$$R_i = C_{i,n} - C_{i,n+1-i}, \quad i = 2, \dots, n$$

By completing the triangle into a square

# Run-Off (cumulative) triangle



#### Chain ladder

[1]  $E[C_{i,j+1}|C_{i,1}, \ldots, C_{i,j}] = f_j C_{i,j}$ [2]  $Var[C_{i,j+1}|C_{i,1}, \ldots, C_{i,j}] = \sigma_j^2 C_{i,j}^{\alpha}, \alpha \in \mathbb{R}$ [3] Accident years  $[C_{i,1}, \ldots, C_{i,n}]$  are independent vectors

# Development factors (link ratios) $f_j$

$$\widehat{f}_{j}^{(n)} = rac{\sum_{i=1}^{n-j} C_{i,j}^{1-lpha} C_{i,j+1}}{\sum_{i=1}^{n-j} C_{i,j}^{2-lpha}}, \quad 1 \le j \le n-1$$
 $\widehat{f}_{n}^{(n)} \equiv 1$  (assuming no tail)

# Mack or linear regression

- $\alpha = 0$  ... linear regression (no intercept, homoscedastic) for  $[C_{\bullet,j}, C_{\bullet,j+1}]$  satisfies CL
- $\alpha = 1 \dots$  Mack (1993), But also the Aitken (no intercept, heteroscedastic) regression model with weights  $C_{i,i}^{-1}$
- smoothing (and extrapolation) of development factors possible

#### Ultimates and reserves

- Ultimate claims amounts  $C_{i,n}$  are estimated by

$$\widehat{C}_{i,n} = C_{i,n+1-i} \times \widehat{f}_{n+1-i}^{(n)} \times \dots \times \widehat{f}_{n-1}^{(n)}$$

- Reserves  $R_i$  are, thus, estimated by

$$\widehat{R}_{i} = \widehat{C}_{i,n} - C_{i,n+1-i} = C_{i,n+1-i} \left( \widehat{f}_{n+1-i}^{(n)} \times \dots \times \widehat{f}_{n-1}^{(n)} - 1 \right)$$

# Generalized Linear Models

- a flexible generalization of ordinary linear regression
- formulated by John <u>Nelder</u> and Robert <u>Wedderburn</u> as a way of unifying various other statistical models, including <u>linear regression</u>, <u>logistic regression</u> and <u>Poisson regression</u>

## GLM: 3 elements

l. random component: outcome of the dependent variables Y from the exponential family, i.e.,

 $f_Y(y;\theta,\phi) = \exp\left\{ [y\theta - b(\theta)]/a(\phi) + c(y,\phi) \right\}$ 

where  $\theta$  is <u>canonical parameter</u>,  $\phi$  is dispersion parameter and  $EY_i = \mu_i$ 

2. <u>systematic component</u>: <u>linear predictor</u> (mean structure)

$$\eta = X\beta$$

3. <u>link</u>: function g

$$\eta_i = g(\mu_i)$$

### Exponential family

- include many of the most common distributions, including the normal, exponential, gamma, chi-squared, Beta, Dirichlet, Bernoulli, categorical, Poisson, Wishart, Inverse Wishart and Many others
- a number of common distributions are exponential families only when <u>certain parameters</u> are considered fixed and known, e.g., Binomial (with fixed number of trials), multinomial (with fixed number of trials), and negative Binomial (with fixed number of failures)
- common distributions that are <u>not exponential families</u> are Student's t, most mixture distributions, and even the family of uniform distributions with unknown bounds

# Canonical link sufficient statistic

- exponential family

 $\mathsf{E}Y = \mu = b'(\theta), \quad \mathsf{Var}Y = b''(\theta)a(\phi) \equiv V(\mu)\tilde{a}(\phi)$ 

- distribution  $\longleftrightarrow$  link function (sufficient statistic  $\longleftrightarrow$  canonical link)
  - ▶ normal ... identity:  $\mu_i = \mathbf{X}_{i, \bullet} \boldsymbol{\beta}$
  - Gamma (exponential) ... inverse (reciprocal):  $\mu_i^{-1} = \mathbf{X}_{i, \bullet} \boldsymbol{\beta}$
  - ▶ Poisson ... logarithm:  $\log(\mu_i) = \mathbf{X}_{i, \bullet} \boldsymbol{\beta}$
  - ▶ Binomial (multinomial) ... logit:  $\log\left(\frac{\mu_i}{1-\mu_i}\right) = \mathbf{X}_{i,\bullet}\boldsymbol{\beta}$
  - $\blacktriangleright$  inverse Gaussian ... reciprocal squared:  $\mu_i^{-2} = \mathbf{X}_{i,ullet}eta$

### Link functions

- logit  $\eta = \log\{\mu/(1-\mu)\}$
- probit  $\eta=\Phi^{-1}(\mu)$
- complementary log-log  $\eta = \log\{-\log(1-\mu)\}$
- power family of links

$$\eta = \begin{cases} (\mu^{\lambda} - 1)/\lambda, & \lambda \neq 0, \\ \log \mu, & \lambda = 0; \end{cases} \quad \text{or} \quad \eta = \begin{cases} \mu^{\lambda}, & \lambda \neq 0, \\ \log \mu, & \lambda = 0. \end{cases}$$

### Estimation

- estimation of the parameters via <u>maximum likelihood</u>, <u>quasi-likelihood</u> or Bayesian techniques

 $N(\mu, \sigma^2)$ 

- support  $(-\infty, +\infty)$
- dispersion parameter  $\phi=\sigma^2$
- cumulant function  $b(\theta) = \theta^2/2$
- $c(y,\phi) = -\frac{1}{2} \left( \frac{y^2}{\phi} + \log(2\pi\phi) \right)$
- $\mu(\overline{\theta)} = \mathsf{E}_{\theta} Y = \theta$
- canonical link  $\theta(\mu)$ : identity
- variance function  $V(\mu) = 1$

# $Po(\mu)$

- support  $\{0,1,2,\ldots\}$
- dispersion parameter  $\phi=1$
- cumulant function  $b(\theta) = \exp\{\theta\}$
- $c(y,\phi) = -\log y!$
- $\mu(\theta) = \mathsf{E}_{\theta}Y = \exp\{\theta\}$
- canonical link  $\theta(\mu)$ : log
- variance function  $V(\mu) = \mu$

# $\Gamma(\mu, \nu)$

- support  $(0,+\infty)$
- Var $Y = \mu^2 \nu$
- dispersion parameter  $\phi=
  u^{-1}$
- cumulant function  $b(\theta) = -\log\{-\theta\}$
- $c(y,\phi) = \nu \log(\nu y) \log y \log \Gamma(\nu)$
- $\mu(\theta) = \mathsf{E}_{\theta}Y = -1/\theta$
- canonical link  $\theta(\mu)$ : reciprocal
- variance function  $V(\mu) = \mu^2$

### Mack's model as GLM

- reformulate Mack's model as a model of ratios

$$\mathsf{E}\left[rac{C_{i,j+1}}{C_{i,j}}
ight] = f_j$$
 and  $\mathsf{Var}\left[rac{C_{i,j+1}}{C_{i,j}} \middle| C_{i,1},\ldots,C_{i,j}
ight] = rac{\sigma_j^2}{C_{i,j}}$ 

- conditional weighted normal GLM

$$\frac{C_{i,j+1}}{C_{i,j}} \sim \mathbb{N}\left(f_j, \frac{\sigma_j^2}{C_{i,j}}\right)$$

 Mack's model was not derived/designed as a GLM, But a conditional weighted normal GLM gives the <u>same estimates</u>

# GLM for triangles

- independent incremental claims X<sub>ij</sub>, i + j ≤ n + 1
 ▶ overdispersed Poisson distributed X<sub>ij</sub>

 $\mathsf{E}[X_{ij}] = \mu_{ij}$  and  $\mathsf{Var}[X_{ij}] = \phi \mu_{ij}$ 

• Gamma distributed  $X_{ij}$ 

 $\mathsf{E}[X_{ij}] = \mu_{ij}$  and  $\mathsf{Var}[X_{ij}] = \phi \mu_{ij}^2$ 

- logarithmic link function

 $\log(\mu_{ij}) = \gamma + \alpha_i + \beta_j, \quad \alpha_1 = \beta_1 = 0$ 

# GLM for triangles II

- overdispersed Poisson with log link provides asymptotically same parameter estimates, predicted values and prediction errors
- possible extensions:
  - ► <u>Hoerl</u> curve

 $\log(\mu_{ij}) = \gamma + \alpha_i + \beta_j \log(j) + \delta_j j$ 

<u>smoother</u> (semiparametric)

 $\log(\mu_{ij}) = \gamma + \alpha_i + s_1(\log(j)) + s_2(j)$ 

#### Estimation in triangles

- ML (maximum likelihood) ... likelihood

$$L(\boldsymbol{\theta}, \phi; \mathbf{X}) = \prod_{i=1}^{n} \prod_{j=1}^{n+1-i} f(X_{ij}; \theta_{ij}, \phi)$$

- maximize log-likelihood w.r.t. parameters of  $\mu$ , which is an argument of  $\theta$ , i.e.,  $\theta(\mu(\alpha,\beta))$
- ! there is no overdispersed Poisson distribution (only if thinking of negative Binomial)
- QML (quasi-maximum likelihood)...<u>quasi-likelihood</u> for ODP

$$\log Q(\boldsymbol{\mu}; \mathbf{X}) = \sum_{i=1}^{n} \sum_{j=1}^{n+1-i} \phi(X_{ij} \log \mu_{ij} - \mu_{ij}) + const$$

# Generalized additive Models

- <u>GAM</u> ... extension of GLM, with the linear predictor being replaced by a non-parametric smoother

$$\eta_{ij} = \sum_{k=1}^{p} s_k(X_{ij})$$

- s(x) represents a non-parametric smoother on x, which may be chosen from several different types of smoother, such as locally weighted regression smoothers (loess), cubic smoothing splines and kernel smoothers

#### GAM

- Ex: <u>smoothing</u> (trade-off between smoothness and fit) for univariate (p = 1) cubic spline with normal distribution

$$\min\left\{\sum_{i,j} [X_{ij} - s(X_{ij})]^2 + \lambda \int [s''(t)]^2 \mathrm{d}t\right\}$$

### Bayesian approach

- problem of instability in the proportion of ultimate claims paid in the early development years, causing a method such as the CL to produce unsatisfactory results when applied mechanically
- to stabilize the results using an external initial estimate of ultimate claims

#### Bornhuetter-Ferguson

- reminder from CL: outstanding claims

 $R_i = C_{i,n+1-i}(f_{n+1-i} \times \ldots \times f_{n-1} - 1)$ 

#### Assumptions

(f)  $E[C_{i,j+k}|C_{i,1},...,C_{i,j}] = C_{i,j} + (\beta_{j+k} - \beta_j)\mu_i$  and  $E[C_{i,1}] = \beta_1\mu_i$   $\beta_j > 0, \ \mu_i > 0, \ \beta_n = 1$   $1 \le i \le n, \ 1 \le j \le n, \ 1 \le k \le n - j$ (2) accident years  $[C_{i,1},...,C_{i,n}], \ 1 \le i \le n$  are independent

- estimate  $\widehat{C}_{i,n}^{BF}$  for ultimates
- Bayesian approach to CL

# Bornhuetter-Ferguson Method

 a very <u>robust</u> method since it does not consider outliers in the observations

Implied Assumptions

(f)  $E[C_{i,j}] = \beta_j \mu_i$   $\beta_j > 0, \ \mu_i > 0, \ \beta_n = 1$   $1 \le i \le n, \ 1 \le j \le n$ (2) accident years  $[C_{i,1}, \dots, C_{i,n}], \ 1 \le i \le n$  are independent

- "implied" assumptions are weaker than the original BF assumptions (and, hence, not equivalent)

# BF Estimator

- BF estimator of ultimate from the latest

$$\widehat{C}_{i,n}^{BF} = C_{i,n-i+1} + (1 - \widehat{\beta}_{n-i+1})\widehat{\mu}_i$$

- comparing <u>CL</u> and <u>BF</u> model  $\rightarrow \prod_{k=j}^{n-1} f_k^{-1}$  plays the role of  $\beta_j$  and, therefore,

$$\widehat{eta}_j = \prod_{k=j}^{n-1} rac{1}{\widehat{f_k}}$$

- need a prior estimate for  $\mu_i$ 

- $\hat{\mu}_i$  is often a <u>plan value</u> from a strategic business plan or the value used for <u>premium</u> calculations
- $\hat{\mu}_i$  should be <u>estimated before</u> one has any Observations (i.e., should be a pure prior estimate Based on expert opinion) !

# Comparison of BF and CL Estimators

- if the prior estimate of ultimates  $\mu_i$  is equal to the <u>CL estimate</u> of ultimates, then the <u>BF and CL</u> estimators underline
- BF:

$$\widehat{C}_{i,n}^{BF} = C_{i,n-i+1} + (1 - \widehat{\beta}_{n-i+1})\widehat{\mu}_i$$

#### - CL:

$$\widehat{C}_{i,n}^{CL} = C_{i,n-i+1} + (1 - \widehat{\beta}_{n-i+1})\widehat{C}_{i,n}^{CL}$$

- BF differs from the CL in that the CL estimate of ultimate claims is replaced by an alternative estimate based on external information and expert judgement

#### Bayesian Models

<u>a prior distribution</u> for row (ultimate) parameter
 Ex: ODP model, where an obvious candidate is

 $\mu_i \sim \text{independent } \Gamma(\gamma_i, \delta_i)$ 

such that

$$\mathsf{E}\mu_i = \frac{\gamma_i}{\delta_i}$$

#### Predictive distribution

- posterior predictive distribution of incremental claims  $X_{i,j}$  is an over-dispersed negative binomial distribution with mean

$$\left[Z_{i,j}C_{i,j-1} + (1 - Z_{i,j})\frac{\gamma_i}{\delta_i}\frac{1}{f_{j-1} \times \ldots \times f_{n-1}}\right](f_{j-1} - 1)$$

where

$$Z_{i,j} = \frac{\frac{1}{f_{j-1} \times \dots \times f_{n-1}}}{\delta_i \phi + \frac{1}{f_{j-1} \times \dots \times f_{n-1}}}$$

### Credibility formula

- a natural trade-off between two competing estimates for  $X_{i,j}$ 

$$C_{i,j-1}$$
 and  $rac{\gamma_i}{\delta_i}rac{1}{f_{j-1} imes\dots imes f_{n-1}}=\mathsf{E}[\mu_i]rac{1}{f_{j-1} imes\dots imes f_{n-1}}$ 

- Bayesian model has the <u>CL</u> as one extreme (<u>no prior</u> information about the row parameters) and the <u>BF</u> as the other (<u>perfect prior</u> information about the row parameters)

## Bayesian trade-Off

- BF assumes that there is perfect prior information about the row parameters (does not use the data at all for one part of estimation) ...heroic assumption
- prefer to use something Between BF and CL
- credibility factor  $Z_{i,j}$  governs the trade-off Between the prior mean and the data
- the further through the development we are, the larger  $\frac{1}{f_{j-1} \times \ldots \times f_{n-1}}$  becomes, and the more weight is given to the CL ladder estimate
- choice of  $\delta_i$  is governed by the prior precision of the initial estimate for ultimates ... with regard given to the over-dispersion parameter (e.g., an initial estimate from the ODP)

# Cape Cod

- another Bayesian-like approach Assumptions (1)  $E[C_{i,j}] = \kappa \pi_i \beta_j$   $\kappa > 0, \pi_i > 0, \beta_j > 0, \beta_n = 1$   $1 \le i \le n, 1 \le j \le n, 1 \le k \le n - j$ (2) accident years  $[C_{i,1}, \dots, C_{i,n}], \quad 1 \le i \le n$  are independent

- estimate  $\widehat{C}_{i,n}^{CC}$  for ultimates
- <u>equivalent to implied</u> assumptions of <u>BF</u> with  $\mu_i = \kappa \pi_i$

# Cape Cod Estimator

- main deficiency of DFM (CL) ... ultimate claims completely depend on the latest diagonal claims ~~ <u>not robust</u> (sensitive to outliers)
- moreover, in <u>long-tailed</u> LoBs (e.g., liability) the first observation is not representative
- one possibility is to smoothen outliers from the latest (diagonal) ~> combine BF and CL into Benktander-Hovinen method
- another way is to make the diagonal claims more robust ~> Cape Cod method
- CC estimator of ultimate from the latest

$$\widehat{C}_{i,n}^{CC} = C_{i,n-i+1} - \widehat{C}_{i,n-i+1}^{CC} + \prod_{j=n-i+1}^{n-1} f_j \widehat{C}_{i,n-i+1}^{CC}$$

# Generalised Cape Cod

- $\pi_i$  can be interpreted as the premium received for accident year i
- $\kappa$  reflects the <u>average loss ratio</u>
- <u>loss ratio</u> for an accident year using the CL estimate for the ultimate claim

$$\widehat{\kappa}_{i} = \frac{\widehat{C}_{i,n}^{CL}}{\pi_{i}} = \frac{C_{i,n-i+1}}{\prod_{j=n-i+1}^{n-1} f_{j}\pi_{i}} = \frac{C_{i,n-i+1}}{\beta_{n-i+1}\pi_{i}}$$

- initial expected ratio may be set to the same value derived from an overall weighted ("robusted") average ratio (simple CC method)

$$\widehat{\kappa}^{CC} = \sum_{i=1}^{n} \frac{\beta_{n-i+1}\pi_i}{\sum_{k=1}^{n} \beta_{n-k+1}\pi_k} \widehat{\kappa}_i = \frac{\sum_{i=1}^{n} C_{i,n-i+1}}{\sum_{i=1}^{n} \beta_{n-i+1}\pi_i}$$

# Generalised Cape Cod II

- robusted value for latest (diagonal)

 $\widehat{C}_{i,n-i+1} = \widehat{\kappa}^{CC} \pi_i \beta_{n-i+1}$ 

- in the CC method, the CL iteration is applied to the robusted diagonal

$$\widehat{C}_{i,n}^{CC} = C_{i,n-i+1} + (1 - \beta_{n-i+1})\widehat{\kappa}^{CC}\pi_i$$

- Modification of a BF type with modified a prior  $\widehat{\kappa}^{CC}\pi_i$
- <u>Generalised CC</u> with decay factor  $0 \le d \le 1 \rightsquigarrow$ constant  $\hat{\kappa}^{CC}$  is replaced with  $[\hat{\kappa}_1^{CC}, \ldots, \hat{\kappa}_n^{CC}]$  for different accident years

$$\widehat{\kappa}_i^{CC} = d\widehat{\kappa}^{CC} + (1-d)\widehat{\kappa}_i$$

factor of 0 ... no smoothing (<u>CL</u>); factor of 1
 ... constant initial ratio (Simple CC)

# Generalized estimating equations

- classical approaches to claims reserving problem are Based on the limiting assumption that the claims in different years are independent variables
- <u>dependencies</u> in the development years ~~ classical techniques provide incorrect prediction
- no distributional assumptions (avoiding distribution misspecification)

### GEE

- run-off triangles as one of the most typical type of actuarial data comprise <u>correlated longitudinal data</u> (or generally <u>clustered data</u>), where an accident year corresponds to a subject
- claims within "subject" should be considered as <u>correlated</u> by nature
- incremental claims for accident year  $i \in \{1, \dots, n\}$ create a  $(n-i+1) \times 1$  vector  $\mathbf{X}_i = [X_{i,1}, \dots, X_{i,n-i+1}]^\top$ and define their expectations

$$\mathsf{E}\mathbf{X}_i = oldsymbol{\mu}_i = [\mu_{i,1},\ldots,\mu_{i,n+1-i}]^+$$

# Link function and linear predictor

- accident year i and development year j influence the expectation of claim amount via so-called link function g in the following manner:

$$\mu_{i,j} = g^{-1}(\mathbf{z}_{i,j}^{\top}\boldsymbol{\theta}),$$

where  $g^{-1}$  is referred to as the inverse of scalar link function g and  $\mathbf{z}_{i,j}$  is a  $p \times 1$  vector of (fictional) covariates that arranges the impact of accident and development year on the claim amount through model parameters  $\boldsymbol{\theta} \in \mathbb{R}^{p \times 1}$ 

#### Example of link

- e.g., the Hoerl curve with the logarithmic link function can be "coded" by design matrix

 $\mathbf{z}_{i,j} = [1, \delta_{1,i}, \dots, \delta_{n,i}, 1 \times \delta_{1,j}, \dots, n \times \delta_{n,j}, \\ \delta_{1,j} \times \log 1, \dots, \delta_{n,j} \times \log n]^{\top}$ 

and parameters of interest

$$\boldsymbol{\theta} = [\gamma, \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n, \lambda_1, \dots, \lambda_n]^\top,$$

where  $\delta_{i,j}$  corresponds to the Kronecker's delta - afterwards

$$\log(\mu_{i,j}) = \gamma + \alpha_i + j\beta_j + \lambda_j \log j$$

#### Variance

- Besides link function g and linear predictor  $\mathbf{z}_{i,j}^{\top} \boldsymbol{\theta}$  (i.e., mean structure  $\mu_i$ ), one needs to specify the variance of claim amounts
- suppose that the variance of incremental claims can be expressed as
   a known function of of their expectations

 $\mathsf{Var}X_{i,j} = \phi h(\mu_{i,j}),$ 

where  $\phi > 0$  is a <u>scale</u> (dispersion) parameter

# Working correlation Matrix

- in the GEE framework, it is not necessary to know the <u>whole distribution</u> of the response (e.g., a distribution of the incremental claims) like in the GLM setup
- sufficient to specify the variance of  $X_{i,j}$  and the working correlation matrix

$$\mathbf{R}_i(\boldsymbol{\vartheta}) \in \mathbb{R}^{(n-i+1) \times (n-i+1)}$$

for incremental claims in each accident year

# Working correlation Matrix II

- correlation matrix differs from accident year to accident year
- however, each correlation matrix depends only on the  $s \times 1$  vector of unknown parameters  $\vartheta$ , which is the same for all the accident years
- consequently, the working covariance matrix of the incremental claims is

$$\mathsf{Cov}\mathbf{X}_i = \phi \mathbf{A}_i^{1/2} \mathbf{R}_i(\boldsymbol{\vartheta}) \mathbf{A}_i^{1/2},$$

where  $A_i$  is an  $(n-i+1) \times (n-i+1)$  diagonal matrix with  $h(\mu_{i,j})$  as the *j*th diagonal element

- the name "working" comes from the fact that it is not expected to be correctly specified

# Choice of working correlation matrix

 the simplest case is to assume <u>uncorrelated</u> incremental claims, i.e.,

$$\mathbf{R}_{i}(\boldsymbol{\vartheta}) = \mathbf{I}_{n-i+1} = \{\delta_{j,k}\}_{i,k=1}^{n-i+1,n-i+1}$$

- opposite extreme case is an <u>unstructured</u> correlation matrix

$$\mathbf{R}_i(oldsymbol{artheta}) = \{artheta_{j,k}\}_{j,k=1}^{n-i+1,n-i+1}$$

such that  $\vartheta_{j,j} = 1$  for  $j = 1, \dots, n-1+1$  and  $\mathbf{R}_i(\boldsymbol{\vartheta})$  is positive definite

# Choice of working correlation matrix ||

- somewhere in Between, there lies an <u>exchangeable</u> correlation structure

 $\overline{\mathbf{R}_{i}(\boldsymbol{\vartheta})} = \{\delta_{j,k} + (1 - \delta_{j,k})\boldsymbol{\vartheta}\}_{j,k=1}^{n-i+1,n-i+1}, \quad \boldsymbol{\vartheta} = [\boldsymbol{\vartheta}, \dots, \boldsymbol{\vartheta}]^{\top}$ 

- an *m*-dependent

 $\mathbf{R}_{i}(\boldsymbol{\vartheta}) = \{r_{j,k}\}_{j,k=1}^{n-i+1,n-i+1}, \quad r_{j,k} = \begin{cases} 1, & j = k, \\ \vartheta_{|j-k|}, & 0 < |j-k| \le m, \\ 0, & |j-k| > m \end{cases}$ 

- an autoregresive AR(1) correlation structure

 $\mathbf{R}_{i}(\boldsymbol{\vartheta}) = \{\vartheta^{|j-k|}\}_{j,k=1}^{n-i+1,n-i+1}, \quad \boldsymbol{\vartheta} = [\vartheta,\ldots,\vartheta]^{\top}.$ 

#### Quasi-likelihood

- parameter estimation in the GEE framework is performed in a way that the theoretical Quasi-likelihood

$$Q(x;\mu) = \int \frac{x-\mu}{h(\mu)} \mathrm{d}\mu$$

is used instead of the true log-likelihood function - Quasi-likelihood estimate in GEE setup is the solution of the <u>score-like equation</u> system

$$\sum_{i=1}^{n} \left[rac{\partial oldsymbol{\mu}_{i}}{\partial oldsymbol{ heta}}
ight]^{ op} \phi^{-1} \mathbf{A}_{i}^{-1/2} \mathbf{R}_{i}^{-1}(oldsymbol{artheta}) \mathbf{A}_{i}^{-1/2} (\mathbf{X}_{i} - oldsymbol{\mu}_{i}) = oldsymbol{0} \in \mathbb{R}^{p},$$

where  $[\partial \mu_i / \overline{\partial \theta}]$  is a  $(n - i + 1) \times p$  matrix of partial derivatives of  $\mu_i$  with respect to the unknown parameters  $\theta$ 

### Further work

- claims generating process: incremental paid claims  $X_{i,j}$  to be the sum of  $N_{i,j}$  (independent) claims of amount  $Y_{i,j}^k$ ,  $k = 1, \ldots, N_{i,j}$
- Wright's model
- Tweedie compound distribution

# Conclusions

- CL
- GLM
- GAM
- BF
- Bayesian framework
- *CC*
- GEE

### References

England, P. D. and Verrall, R. J. (2002) Stochastic claims reserving in general insurance (with discussion). British Actuarial Journal, 8 (3).

- Hudecova, S. and Pesta, M. (2012) Generalized estimating equations in claims reserving. In Komarek, A. and Nagy, S., editors, Proceedings of the 27th International Workshop on Statistical Modelling, Vol. 2, p. 555-560, Prague.
- Wüthrich, M., Merz, M. (2008) Stochastic claims reserving methods in insurance. Wiley finance series. John Wiley & Sons.

# Thank you !

pesta@karlin.mff.cuni.cz