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Motivation 

Majority of actuarial tasks in life insurance is based on projection of future cash flows from insurance 

contracts (existing contracts in-force as at the valuation date or/and future new contracts concluded after 

the valuation date; valuation date is the date when the projection starts). 

Such tasks are for example: 

 Accounting purposes: 

o Liability Adequacy Test (LAT) – i.e. testing of adequacy of the accounting value of life technical 

provision, 

o IFRS17 – where the technical provision is based on the present value of the future cash flows 

and also the expected cash flows themselves are crucial in the financial reporting. 

 Solvency II: 

o valuation of: 

 best estimate value of life insurance liabilities (BEL), 

 fair value of life insurance liabilities, 

o stress testing of the BEL according to different assumptions of mortalities, lapses, expenses, 

interest rates, equities, etc. – all these are used for determination of SCR (Solvency Capital 

Requirement), ORSA (Own Risk and Solvency Assessment), internal risk management and 

many other applications. 

 Other value and risk management purposes: 

o Assets Liability Management (ALM), 

o Embedded Value (EV) calculation, 

o Determination of the Value of New Business (VNB), 

o Profit Testing of new products, 

o Business Plans. 

Traditionally, actuaries solve these tasks by running a projection model that calculates a development of 

the cash flows (and other variables) per each individual policy in scope to future periods based on defined 

inputs. Such inputs typically are list of contracts (existing and/or including future new business) and 
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assumptions of the future development (typically probabilities of deaths and lapse, unit costs, level of 

commissions, interest rates, etc.).  

Let us call this detailed modelling approach as the "per-policy model” for the purposes of this paper. 

Such calculations (using the per-policy model) are quite extensive. Let us imagine, a mid-sized life 

insurance company: 

 with 500 000 policies in the portfolio; 

 for which we want to project next 50 years (usually even more) on the monthly step; therefore, 

50 years represents 600 months; 

 every month, let us assume a calculation of 500 variables (usually 200 – 1000). 

This already represents 150 x 109 (500 000 x 600 x 500) calculations of variables under one set of 

assumptions. We will call such one calculation of the per-policy model (under one set of assumptions) as 

one “scenario run” or just a “scenario”. 

Obviously, already this one scenario run takes some time – it strongly depends on powerfulness of the 

software and hardware used and optimization of the projection model structure. Therefore, usually only 

a limited number of scenarios can be processed in a reasonable time by this per-policy model. 

However, actuaries are more and more asked (by managers, regulators, auditors, etc.) to deliver results 

based on many more than units of scenarios, often hundreds or even (many) thousands.  

Typically, such tasks are for example: 

 valuation of Time Value of Financial Options and Guarantees (TVFOG) often included in life contracts, 

where results (usually the present value of the future cash flows – PVCF) of several hundreds of 

interest rates scenarios are needed; 

 dynamic and stochastic ALM, where inter-relations between assets and liabilities are modelled on 

monthly (or annual) basis and specific investment strategy is decided dynamically based on the assets 

cash flow, the cash flow from policies and the actual investment returns. 

Due to this quite complex calculation, usually even one dynamic scenario of the per-policy model 

described above is very time-consuming. And again, different stakeholders can ask for results under 

many scenarios – e.g. for the purposes of TVFOG valuation, optimization of the investment strategy, 

empirical distribution of the BEL and many others; 

 internal model (in a sense of Solvency II) where again thousands of scenarios should be run. 

To obtain results of these tasks, the runtimes of the per-policy model might be unacceptably long (several 

days, even weeks/months) even if the actuary employs professional software (as Prophet, Sophas, 

MoSes, ...) and hardware (powerful computers with many cores etc.). 

This is why some alternative solution of how to obtain the life cash flows projection results (and other 

results based on the cash flows projection – typically present value of the cash flows (PVCF)) based on 
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many scenarios in reasonable time with acceptable deviation from the per-policy model results are to be 

investigated. 

Objective 

Within this paper, we will focus on two approaches how to determine (estimate) the future life insurance 

cash flows based on many interest rates scenarios in a reasonable runtime. 

This is very important for many real life applications. In practice, usually the first task where it is required 

is the valuation of the TVFOG (required at least by the Solvency II).  

We will call these techniques as "Analytical" and "Interpolation" approximations in this paper.  

Both approaches have been developed within our team in the Tools4F actuarial consulting company 

during the years 2015 and 2016. We have also tested them on real life insurance portfolio with very good 

(for the Interpolation approach even with excellent) results. 

Note: 

Note that in the real life practice, we might be interested in approximation of several variables. Very often:  

a) average of PVCFs under many interest rates scenarios – to determine BEL = E{PVCF}, 

b) PVCF under each interest rates scenario individually (especially for the risk management purposes) – 

to obtain the full PVCF distribution , 

c) cash flow at any time in future under any interest rates scenario – this is what we are focusing on 

here in this paper, 

d) other variables projection (premium, expenses, claims, technical provisions, profits, ...) under any 

interest rates scenario. 

In this paper, we will focus on approximation of the future cash flows – ad c) – as:  

 if we are able to estimate the future cash flow at any time t under any interest rates scenario, then 

we are automatically able to calculate the present value these cash flows (i.e. to obtain PVCF (as ad 

b)) and naturally also to calculate the average of these PVCFs to obtain the estimation of the BEL (as 

ad a)) and 

 for ad d), the analogical approach as for the cash flows estimation could be applied. 

 

Important note! 

Note that the only type of interest rates that affects the future cash flows themselves are the rates that 

are the basics for the profit sharing decisions. The (cumulative) profit sharing amount is usually paid to 

the beneficiary at the policy termination (lapse, death, maturity, etc.). These rates follow the company 

profit sharing principles. Very often, and this is what we expect here in this paper, they depend on the 

market interest rates development. Typically, the profit sharing rate is based on the investment 

performance of the company assets portfolio (in accounting or market value view) or might be defined as 

the future risk free interest rate (potentially plus some spread) for a given maturity, etc. 
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There are other types of interest rates used in the life insurance calculations.  

For example: 

 for discounting of future cash flows (usually the risk free rates should be applied) or 

 for projection of future accounting profits – investment returns (following accounting principles) 

should be projected. 

However, these interest rates do not affect the cash flow itself. 

Therefore, if not specified otherwise, the interest rates in this paper from now on, will mean the interest 

rates that are credited to the policyholders’ funds as profit share plus a guarantee (if the guarantee is 

included in the policy definition). 

Notation 

We will use the following notation in this paper. 

valuation date represents the date from which the projection starts 

t the time in time unit (in practice usually 1 month) from the valuation date; 

t=0 at the valuation date 

n total number of months projected, t = 1, 2, …, n 

𝒊(𝒋) interest rates scenario j, vector of interest rates 𝒊(𝒋) = (𝑖1
(𝑗)

, 𝑖2
(𝑗)

, … , 𝑖𝑛
(𝑗)

) 

𝑖𝑡
(𝑗)

 the interest rate (of the scenario j at the time t) that represents the total 

interest rate that is credited to the policyholder (profit share + potential 

guarantee) 

𝐼𝑡
(𝑗)

𝑟  𝐼𝑡
(𝑗)

= (1 + 𝑖𝑟+1
(𝑗)

)𝑟 ∙ (1 + 𝑖𝑟+2
(𝑗)

) ∙ … ∙ (1 + 𝑖𝑡
(𝑗)

) 

𝑟𝜖𝑁 and 𝑟 < 𝑡 

𝐼𝑡
(𝑗)

 𝐼𝑡
(𝑗)

= 𝐼𝑡
(𝑗)

0 . 

s total number of interest rates scenarios considered, j = 1, 2, …, s 

𝐶𝐹𝑡
(𝑚),(𝑗)

 cash flow of the policy m at the time t under interest rates scenario j 

m the policy number, m = 1, 2, …, M 

M total number of policies within the portfolio 

𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 cash flow of a portfolio of policies at the time t under interest rates scenario j 

𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

= ∑ 𝐶𝐹𝑡
(𝑚),(𝑗)

𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)
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There also might be some additional notations defined if necessary for the specific purpose in the 

following text. 

Analytical approach 

Usually, to obtain 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

, the cash flow for the whole portfolio, a per-policy model calculates cash flows 

𝐶𝐹𝑡
(𝑚),(𝑗)

per each individual policy m and then sums it up (according to each projection month t). 

It is, 

 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

= ∑ 𝐶𝐹𝑡
(𝑚),(𝑗)

𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)  (1) 

Idea and Objective 

The Analytical approach aims to find the analytical formula of 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

where: 

 the only variable inputs are the interest rates;  

More specifically, for a determination of the 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 at the time t, the interest rates 

(𝑖1
(𝑗)

, 𝑖2
(𝑗)

, … , 𝑖𝑡
(𝑗)

) – i.e. until the time t – are the inputs. They all are known at the time t. 

 other parts of the formula are coefficients that are not dependent on interest rates. 

 

It is, to find the formula for 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 in the following form: 

 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

= 𝐶𝐹𝑓𝑖𝑥𝑡
𝑝𝑡𝑓

+ ∑ [𝑐𝑜𝑒𝑓𝑡
(𝑞)

∙ 𝑓𝑛𝑡
(𝑞)

(𝑖1
(𝑗)

, 𝑖2
(𝑗)

, … , 𝑖𝑡
(𝑗)

)]𝑞  (2) 

𝑓𝑡
 (𝑚),(𝑗)

 value of the fund of 1 policy m, at the time t under a given scenario j, if no 

decrements (deaths, lapses, etc.) are assumed. 

𝐹𝑡
(𝑚),(𝑗)

 value of the fund of 1 policy m, at the time t under a given scenario j, taking 

into account the decrements. 

𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 value of the fund of the whole portfolio of policies, at the time t under 

interest rates scenario j, taking into account the decrements. 

𝐹𝑡
𝑝𝑡𝑓,(𝑗)

= ∑ 𝐹𝑡
(𝑚),(𝑗)

𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)

 

𝑙𝑡
(𝑚)

 number of policies in force at the time t, for a policy m 

𝑙𝑡
𝑝𝑡𝑓

 number of policies in force at the time t, for the whole portfolio; 

𝑙𝑡
𝑝𝑡𝑓

= ∑ 𝑙𝑡
(𝑚)

𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)
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where 

𝐶𝐹𝑓𝑖𝑥𝑡
𝑝𝑡𝑓

= ∑ 𝐶𝐹𝑓𝑖𝑥𝑡
(𝑚)

𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)  and 

𝐶𝐹𝑓𝑖𝑥𝑡
(𝑚)

 represents the value of the part of the cash flow at the time t for the policy m, that does not 

depend on the interest rates assumption; 𝐶𝐹𝑓𝑖𝑥𝑡
(𝑚)

𝜖𝑅; 

𝑐𝑜𝑒𝑓𝑡
(𝑞)

 is a coefficient (𝑐𝑜𝑒𝑓𝑡
(𝑞)

𝜖𝑅) relevant to the time t determined for the whole portfolio. 

Note that both, 𝐶𝐹𝑓𝑖𝑥𝑡
(𝑚)

 as well as 𝑐𝑜𝑒𝑓𝑡
(𝑞)

 can be determined from results of one run of the per-policy 
model (no matter what interest rates scenario is assumed). 

𝑓𝑛𝑡
(𝑞)

 is a function of interest rates at the time t; same function for every policy at the time t and 

𝑞 identifies the pair of related 𝑐𝑜𝑒𝑓𝑡
(𝑞)

and 𝑓𝑛𝑡
(𝑞)

, 𝑞 = 1, 2,…. 

If we are able to find such an analytical formula for 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

, then we can calculate it out of the per-policy 

model (for any time t and scenario j). This may cause the calculation of the cash flows projection faster 

than when the per-policy model is used. 

Example: 

To be more illustrative, let us look closer at a specific example. 

Let us consider: 

 universal life type of policy where in case of death the insurance company pays  

o fixed sum assured (SA) plus 

o the value of the fund at the time of death including the cumulative profit share (𝑓𝑡
(𝑚),(𝑗)

). 

Let us investigate the formula for the cash flow of the whole policy portfolio at time 𝑡 = 2 (i.e. second 

projection month) – 𝐶𝐹2
𝑝𝑡𝑓,(𝑗)

. 

At the time 𝑡 = 2, we know the interest rates of the specific scenario for the first two projected months 

– it is (𝑖1
(𝑗)

, 𝑖2
(𝑗)

). Remember that both rates are the interest rates that are credited to the policyholder 

(profit share + guarantee (if exists)) – as mentioned above (Important note on the page 3). 

It is, 

𝐶𝐹2
𝑝𝑡𝑓,(𝑗)

= ∑ [𝑙2
(𝑚)

∙ 𝑃2
(𝑚)

− 𝑙2
(𝑚)

∙ 𝐸2
(𝑚)

− 𝑑2
(𝑚)

∙ (𝑆𝐴(𝑚) + 𝑓2
(𝑚),(𝑗)

) − 𝑤2
(𝑚)

∙ 𝑓2
(𝑚),(𝑗)

𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)

− 𝑚𝑎𝑡2
(𝑚)

∙ 𝑓2
(𝑚),(𝑗)

] 

  (3) 

Where (on top of the notation defined above in the part Notation): 
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𝑑2
(𝑚)

 .......... number of policies considered to die within the second month, of the policy 𝑚; 

𝑤2
(𝑚)

 ......... number of policies considered to lapse within the second month, of the policy 𝑚; 

𝑚𝑎𝑡2
(𝑚)

 ..... number of policies that are at maturity in the second month, of the policy 𝑚; 

𝑃2
(𝑚)

.......... premium of 1 policy related to the second month, of the policy 𝑚; 

𝐸2
(𝑚)

 ......... expenses of 1 policy related to the second month, of the policy 𝑚; 

𝑆𝐴(𝑚) ....... sum assured related to the policy 𝑚. 

Let us now continue adjusting the formula (3) in order to separate interest rate sensitive and non-sensitive 

parts: 

𝐶𝐹2
𝑝𝑡𝑓,(𝑗)

= ∑ [𝑙2
(𝑚)

∙ 𝑃2
(𝑚)

− 𝑙2
(𝑚)

∙ 𝐸2
(𝑚)

− 𝑑2
(𝑚)

∙ 𝑆𝐴(𝑚)]

𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)

+ 

 ∑ [(𝑑2
(𝑚)

+ 𝑤2
(𝑚)

+ 𝑚𝑎𝑡2
(𝑚)

) ∙ 𝑓2
(𝑚),(𝑗)

]𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)  (4) 

The first sum of the formula (4) is usually not dependent on the specific interest rates scenario – let us 

denote it 𝐶𝐹𝑓𝑖𝑥2. 

It is, 

𝐶𝐹𝑓𝑖𝑥2
𝑝𝑡𝑓

= ∑ [𝑙2
(𝑚)

∙ 𝑃2
(𝑚)

− 𝑙2
(𝑚)

∙ 𝐸2
(𝑚)

− 𝑑2
(𝑚)

∙ 𝑆𝐴(𝑚)]𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠) . (5) 

Let us now look to the second sum of the formula (4) and remember that the fund value at specific time 

t (here 𝑡 = 2) could be determined as: 

𝑓2
(𝑚),(𝑗)

= (𝑓0
(𝑚),(𝑗)

+ 𝑝𝑟0
𝑠𝑎𝑣𝑖𝑛𝑔,(𝑚)

) ∙ (1 + 𝑖1
(𝑗)

) ∙ (1 + 𝑖2
(𝑗)

) + 𝑝𝑟1
𝑠𝑎𝑣𝑖𝑛𝑔,(𝑚)

∙ (1 + 𝑖2
(𝑗)

) (6) 

where 

𝑝𝑟0
𝑠𝑎𝑣𝑖𝑛𝑔,(𝑚)

 is the saving part of the premium that is paid by policy m at the time t = 0 and analogically 

𝑝𝑟1
𝑠𝑎𝑣𝑖𝑛𝑔,𝑚

 relates to the time t = 1. 

𝑓0
(𝑚),(𝑗)

 is the starting fund value (i.e. the fund value at the valuation date) of 1 policy m. This naturally 

does not depend on the interest rates development in future and thus 𝑓0
(𝑚),(𝑗)

= 𝑓0
(𝑚)

. 

Then, we can write the formula (4) in the following form: 

𝐶𝐹2
𝑝𝑡𝑓,(𝑗)

= 𝐶𝐹𝑓𝑖𝑥2
𝑝𝑡𝑓

+ ∑ [(𝑑2
(𝑚)

+ 𝑤2
(𝑚)

+ 𝑚𝑎𝑡2
(𝑚)

) ∙ (𝑓0
(𝑚)

+ 𝑝𝑟0
𝑠𝑎𝑣𝑖𝑛𝑔,(𝑚)

) ∙𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)

(1 + 𝑖1
(𝑗)

) ∙ (1 + 𝑖2
(𝑗)

)] + ∑ [(𝑑2
(𝑚)

+ 𝑤2
(𝑚)

+ 𝑚𝑎𝑡2
(𝑚)

) ∙ 𝑝𝑟1
𝑠𝑎𝑣𝑖𝑛𝑔,(𝑚)

) ∙ (1 + 𝑖2
(𝑗)

)]𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)   

  (7) 

Let us now denote: 

 𝑐𝑜𝑒𝑓2
(1)

= ∑ [(𝑑2
(𝑚) + 𝑤2

(𝑚) + 𝑚𝑎𝑡2
(𝑚)) ∙ (𝑓0

(𝑚) + 𝑝𝑟
0
𝑠𝑎𝑣𝑖𝑛𝑔,(𝑚))]𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)  
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 𝑐𝑜𝑒𝑓2
(2)

= ∑ [(𝑑2
(𝑚)

+ 𝑤2
(𝑚)

+ 𝑚𝑎𝑡2
(𝑚)

) ∙ 𝑝𝑟
1
𝑠𝑎𝑣𝑖𝑛𝑔,(𝑚)

]𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)  

 𝑓𝑛2
(1),(𝑗)

= (1 + 𝑖1
(𝑗)

) ∙ (1 + 𝑖2
(𝑗)

) 

 𝑓𝑛2
(2),(𝑗)

= (1 + 𝑖2
(𝑗)

) 

and remember that: 

 𝑓𝑛2
(1),(𝑗)

 and 𝑓𝑛2
(2),(𝑗)

 do not depend on the specific policy, i.e. are the same for all the policies and 

thus can be extracted from the sum and  

 𝑐𝑜𝑒𝑓2
(1)

 and 𝑐𝑜𝑒𝑓2
(2)

 do not depend on interest rates and can be obtained from one run of 

the per-policy model (no matter of what interest rates scenario is assumed). 

We therefore finally obtain the formula (4) in the form: 

𝐶𝐹2
𝑝𝑡𝑓,(𝑗)

= 𝐶𝐹𝑓𝑖𝑥2
𝑝𝑡𝑓

+ 𝑐𝑜𝑒𝑓2
(1)

∙ 𝑓𝑛2
(1),(𝑗)

+ 𝑐𝑜𝑒𝑓2
(2)

∙ 𝑓𝑛2
(2),(𝑗)

= 

 = 𝐶𝐹𝑓𝑖𝑥2
𝑝𝑡𝑓

+ ∑ 𝑐𝑜𝑒𝑓2
(𝑞)

∙ 𝑓𝑛2
(𝑞),(𝑗)2

𝑞=1  (8) 

that already is the desired form as in the formula (2). 

Practical process: 

In practice, the calculation process is as follows: 

1) Derive the formulas for the functions 𝑓𝑛𝑡
(𝑞)

 and 𝐶𝐹𝑓𝑖𝑥𝑡
𝑝𝑡𝑓

and  𝑐𝑜𝑒𝑓𝑡
(𝑞)

. This is what is necessary to 

do just once for each of the insurance product until the per-policy model of the product is changed. 

2) Every valuation date (usually every month) then: 

a. Run the per-policy model once (with whatever interest rates scenario) and derive the values of 

the coefficients – 𝐶𝐹𝑓𝑖𝑥𝑡
𝑝𝑡𝑓

and  𝑐𝑜𝑒𝑓𝑡
(𝑞)  and save them. 

b. Now, follow this cyclical calculation: 

FOR j = 1 to s 

 FOR t = 1 to n  

  i.Take the interest rates (𝑖1
(𝑗)

, 𝑖2
(𝑗)

, … , 𝑖𝑡
(𝑗)

  from the given interest rates scenario j (these are 
the inputs) 

ii. Calculate 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 by the formula (8). It is, 

𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

= 𝐶𝐹𝑓𝑖𝑥
𝑡
𝑝𝑡𝑓 + ∑[𝑐𝑜𝑒𝑓

𝑡
(𝑞) ∙ 𝑓𝑛

𝑡
(𝑞)(𝑖1

(𝑗)
, 𝑖2

(𝑗)
, … , 𝑖𝑡

(𝑗)
)]

𝑞

 

 Result of this cycle is the projection of 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 from t = 1 to the final future (t = n) for one 

specific interest rates scenario j. 

Results of this cycle is the 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

projection for s interest rates scenarios. 
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Practical issues: 

Although this approach could be seen as quite simple and clear with no deviations between 

the 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 from the per-policy model and from the approximation, quite often it is not easy to 

determine the analytical formula 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

exactly. 

Typical issues for example are: 

 products where the death benefit is defined as a maximum of the specific sum assured (𝑆𝐴) and the 

current (at the time t) value of the client’s fund ( 𝑓𝑡
(𝑚),(𝑗)

). It is, the death benefit equals to 

𝑚𝑎𝑥 (𝑆𝐴, 𝑓𝑡
(𝑚),(𝑗)

). The complication here is that to estimate future death benefit part of the cash 

flow, we need to sum this max values per each individual policy. But for some policies 𝑓𝑡
(𝑚),(𝑗)

< 𝑆𝐴, 

for some the opposite holds 𝑓𝑡
(𝑚),(𝑗)

≥ 𝑆𝐴 . At the same time, naturally, 𝑓𝑡
(𝑚),(𝑗)

 is very much 

dependent on interest rates; 

 function 𝑓𝑛𝑡
(𝑞),(𝑗)

 might be quite complex if (what is usually the case in practice) the profit share value 

is added to the fund value once per 12 months (usually at the end of the year); 

 to derive the values of the parameters 𝐶𝐹𝑓𝑖𝑥𝑡
𝑝𝑡𝑓

and  𝑐𝑜𝑒𝑓𝑡
(𝑞)

 the per-policy model often has to be 

extended heavily and also, number of parameters 𝐶𝐹𝑓𝑖𝑥𝑡
𝑝𝑡𝑓

and  𝑐𝑜𝑒𝑓𝑡
(𝑞)

 might be huge (also tens of 

thousands). This is why the first run of the per-policy model from which all the parameters are derived 

might be quite time-consuming; 

 the first time preparation is usually extremely demanding. 

To succeed, it is required to: 

o understand all the details of the modeled life products; 

o understand the per-policy model formulas in details; 

o be advanced in mathematics to be able to derive the correct formula in the desired form; 

o be extremely patient – the formulas usually include many indices, sub-parts, members, etc. 

All (100%) of them must be correct, even one mistake in one index makes all the results 

incorrect; 

o have experience in life modelling and be smart to solve the practical issues; 

o be advanced and very careful in programming the approximation formulas – again, no 

mistake is allowed. 

High-level results 

Naturally, the results of this Analytical approach very much depends on specific company situation and 

cannot be generalized correctly. 

Here, we comment briefly just basic results from our case study that was a mid-sized life insurance 

company, using Prophet tool, having large variety of life product types (with many insured persons, riders, 

funds, etc.). 
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Cash flow fit 

The quality of the cash flow fit, i.e. the difference between the 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 from the approximation and the 

per-policy model very much depends on the product complexity. There are products (like in the example 

on the page 6 above) where the cash flow could be calculated exactly with no difference. However, for 

some products simplifications and partial alternative solutions must be developed. 

In our case study, we managed to obtain the difference in vast mast majority of interest rates scenarios 

far below 1% every year, even for complex products and even if the tested interest rates scenarios were 

extreme (from -40% to +60%). 

Present value of the cash flows fit 

PVCF differences (per-policy model vs. approximation) in each of the individual scenarios were up to 

0.5% (±0.5%). 

Average of the PVCFs (BEL estimation) from the approximation were very much close to the value from 

the per-policy model (usually, the differences were below 0.1%). 

Acceleration results 

In our case, the calculation runtime decreased from 5 to 40 times (for 1 000 to 10 000 scenarios). More 

for higher number of scenarios as the most time consuming operation is to calculate the parameters of 

the Analytical approach that are based on one run of the per-policy model, but the model that is heavily 

extended from the standard one to obtain all the detailed results necessary for the parameters 

determination.  

We also implemented the analytical formula calculations in MS Excel. The speed would be definitely be 

much higher if more proper tool would be used (e.g. R, Python, MatLab). 

Conclusion to the Analytical approach 

We see the Analytical approach as quite powerful with the following features: 

 replicates very well the per-policy model cash flows and their present values; 

 runtime might be significantly shorter if proper calculation tool (R, Python, Matlab, …) is used; 

 however, the practical difficulty is that the first time preparation (determination of the formulas for 

all the parameters and extending the existing per-policy model) is usually extremely demanding. 
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Interpolation approach 

This approach again (same as for the Analytical approach) aims on finding an estimation of cash flow at 

specific time t under given interest rates scenario j for given portfolio of policies (e.g. one product) – 

𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

. 

Interpolation approach ideas: 

The main ideas of this approach are the following: 

1) Imagine now that we already have a set of s interest rates scenarios 𝒊(1), 𝒊(2), … , 𝒊(𝑠) for which we 

intend to calculate/estimate 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

.  

(𝒊(𝒋) = (𝑖1
(𝑗)

, 𝑖2
(𝑗)

, … , 𝑖𝑛
(𝑗)

) has the same interpretation as defined in the part Notation) 

2) Let us build a new (fictive) scenario of interest rates 𝒊𝒎𝒂𝒙 = (𝑖1
𝑚𝑎𝑥, 𝑖2

𝑚𝑎𝑥, … , 𝑖𝑛
𝑚𝑎𝑥) that is 

determined for every time t as a maximum of 𝑖𝑡
(𝑗)

 from all the scenarios j.  

It is, for every t, 𝑖𝑡
𝑚𝑎𝑥 = max

∀ 𝑗
𝑖𝑡
(𝑗)

. 

Under this fictive 𝒊𝒎𝒂𝒙 scenario, the projected future profit share credited to clients at each and 

every time t (based on 𝑖𝑡
𝑚𝑎𝑥), will obviously be higher or equal to 𝑖𝑡

𝑗
 under any scenario j (within our 

set of scenarios). 

Therefore: 

=> the future benefits payments (that include the cumulative profit share) will be the highest of all 

from the given set of scenarios and  

=> the relevant cash flow, let us denote it 𝐶𝐹𝑡
𝑝𝑡𝑓,𝒊𝑚𝑎𝑥

 (if defined as incomes minus outcomes as 

usual), creates the lower boundary of all cash flows form all the scenarios within our set. It is, 

𝐶𝐹𝑡
𝑝𝑡𝑓,𝒊𝑚𝑎𝑥

≤ 𝐶𝐹𝑡
𝑝𝑡𝑓,𝒊(𝑗)

 for any t and any j. 

3) And vice versa. If we build a fictive scenario of interest rates 𝒊𝒎𝒊𝒏 = (𝑖1
𝑚𝑖𝑛, 𝑖2

𝑚𝑖𝑛, … , 𝑖𝑛
𝑚𝑖𝑛) that is 

determined for the time t as a minimum of 𝑖𝑡
(𝑗)

 from all the scenarios j; it is, for every t,  

𝑖𝑡
𝑚𝑖𝑛 = min

∀ 𝑗
𝑖𝑡
(𝑗)

, then 

=> the future benefit payments (that include the cumulative profit share) will be the lowest of all 

from the given set of scenarios and 

=> the relevant cash flow, let us denote it 𝐶𝐹𝑡
𝑝𝑡𝑓,𝒊𝑚𝑖𝑛

, creates the upper boundary of all cash flows 

form all the scenarios within our set. It is, 𝐶𝐹𝑡
𝑝𝑡𝑓,𝒊𝑚𝑖𝑛

≤ 𝐶𝐹𝑡
𝑝𝑡𝑓,𝒊(𝑗)

 for any t and any j. 
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4) Therefore, for every interest rate scenario j, 𝒊(𝒋) = (𝑖1
(𝑗)

, 𝑖2
(𝑗)

, … , 𝑖𝑛
(𝑗)

) from the given set of scenarios 

and every time t, the relevant 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 will be positioned somewhere between 𝐶𝐹𝑡
𝑝𝑡𝑓,𝒊𝑚𝑎𝑥

 and 

𝐶𝐹𝑡
𝑝𝑡𝑓,𝒊𝑚𝑖𝑛

.  

It is, 𝐶𝐹𝑡
𝑝𝑡𝑓,𝒊𝑚𝑎𝑥

≤ 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

≤ 𝐶𝐹𝑡
𝑝𝑡𝑓,𝒊𝑚𝑖𝑛

 for every t. 

5) However, the range between 𝐶𝐹𝑡
𝑝𝑡𝑓,𝒊𝑚𝑎𝑥

 and 𝐶𝐹𝑡
𝑝𝑡𝑓,𝒊𝑚𝑖𝑛

 could be quite wide. Therefore, better 

specification of where to find 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 within this range is necessary. 

6) Let us build a grid of z (also fictive) interest rates scenarios that is defined in the following way. 

For every time t split the interval between 𝑖𝑡
𝑚𝑖𝑛 and 𝑖𝑡

𝑚𝑎𝑥 into z-1 equidistant intervals. Let us 

identify the specific grid scenario 𝑔𝑘 where 𝑘 = 1, 2, … , 𝑧.  

Then for every time t the difference 𝑖𝑡
𝑔𝑘 − 𝑖𝑡

𝑔𝑘+1  is constant for all k.  

(Note that 𝑖𝑡
𝑔1 = 𝑖𝑡

𝑚𝑖𝑛 and 𝑖𝑡
𝑔𝑧 = 𝑖𝑡

𝑚𝑎𝑥.) 

Note: There might be other split of the interval between 𝑖𝑡
𝑚𝑖𝑛 and 𝑖𝑡

𝑚𝑎𝑥, e.g. setting them according 
to quantile values (e.g. 10th, 20th, …, 90th) for every time t. However, based on the experimental results, 
both options give similar results and thus the split approach is not crucial. 

7) Then calculate the cash flows projection (cash flow for every time t) within the per-policy model for 

each of the grid scenarios of interest rates - 𝐶𝐹𝑡
𝑝𝑡𝑓,𝑔𝑘 . It means, the per-policy model will run z 

scenarios. 

8) For every interest rates scenario 𝑗 (𝑗 = 1, 2, … , 𝑠) and every time t we would like to find the 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 
between the values of the cash flow at the time t of the “closest” grid scenarios 𝑔𝑘 and 𝑔𝑘+1. 

However, the following questions remain: 

a) How to find, for each time t individually, the closest 𝑔𝑘 and 𝑔𝑘+1?  

b) If we find them, how to interpolate between their cash flows to estimate properly the 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

? 

It is, what proportion of 𝐶𝐹𝑡
𝑝𝑡𝑓,𝑔𝑘  and 𝐶𝐹𝑡

𝑝𝑡𝑓,𝑔𝑘+1  to take? 

9) To solve these questions, let us find an alternative variable that satisfies both of the following two 

conditions: 

a) It is highly correlated (under interest rates scenarios) to 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

  (condition 1) 

b) It is possible to be calculated easily and quickly out of the per-policy model. (condition 2) 

10) If we find such a variable – let us denote it 𝑉𝑡
(𝑗)

 for now – then: 

a) calculate the 𝑉𝑡
𝑔𝑘 for every grid scenarios (𝑘 = 1, 2, … , 𝑧) and every time t (out of the per-policy 

model); 

b) for every scenario j and for every time t: 

i. calculate 𝑉𝑡
(𝑗)

 and find the grid scenarios 𝑔𝑘 and 𝑔𝑘+1 where 𝑉𝑡
𝑔𝑘 ≤ 𝑉𝑡

(𝑗)
≤ 𝑉𝑡

𝑔𝑘+1; 
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ii. see where the 𝑉𝑡
(𝑗)

 ranks between the 𝑉𝑡
𝑔𝑘 and 𝑉𝑡

𝑔𝑘+1.  

It is, determine the ratio 𝑝 =
𝑉𝑡

𝑔𝑘+1−𝑉𝑡
(𝑗)

𝑉𝑡

𝑔𝑘+1−𝑉𝑡

𝑔𝑘
  ; 

iii. determine the estimation of the 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 as being between the grid values 𝐶𝐹𝑡
𝑝𝑡𝑓,𝑔𝑘  and 

𝐶𝐹𝑡
𝑝𝑡𝑓,𝑔𝑘+1  using the same interpolation as for the value of 𝑉𝑡

(𝑗)
 ranking between 𝑉𝑡

𝑔𝑘 

and 𝑉𝑡
𝑔𝑘+1. 

It is, 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

=  𝑝 ∙ 𝐶𝐹𝑡
𝑝𝑡𝑓,𝑔𝑘 + (1 − 𝑝) ∙ 𝐶𝐹𝑡

𝑝𝑡𝑓,𝑔𝑘+1.  

11) What could be the variable 𝑉𝑡
(𝑗)

? 

 Let us consider the value of the clients’ fund to be paid at the time t for the given scenario j for 

the considered portfolio of policies – let us denote it 𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)

.  

 For this variable, we expect high correlation with the 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 as the fund value paid is usually a 

significant part of the cash flow that is paid at the time t and is naturally dependent on the 

interest rates. This satisfies the condition 1 as defined above on the page 12. 

12) 𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)

could be determined by the following calculation: 

Let us define and remind (some of the definitions have already been set above in the part 
Notation): 

𝑓𝑡
(𝑚),(𝑗)

=
𝐹𝑡

(𝑚),(𝑗)

𝑙𝑡
(𝑚)

 

𝑔𝑟  ......... guaranteed interest rate (theoretically could depend on time t, but usually it does not). 
It equals to 0 for the products where minimum interest rate is not guaranteed. 

𝑓𝑡
(𝑚),𝑔𝑟

=
𝐹𝑡

(𝑚),𝑔𝑟

𝑙𝑡
(𝑚)  ...... fund value of 1 policy m at the time t with no decrements, for a scenario 

where all the future interest rates 𝑖𝑡 (for every t) equals to the rate gr. 

(Note that 𝑓0
(𝑚)

= 𝑓0
(𝑚),𝑔𝑟

 as this is the starting value of the fund at the t=0 (the valuation date)) 

𝑓𝑡
𝑔𝑟̅̅ ̅̅ ̅ =

𝐹𝑡
𝑝𝑡𝑓,𝑔𝑟

𝑙𝑡
𝑝𝑡𝑓   ...... is the average value of 𝑓𝑡

(𝑚),𝑔𝑟
 

𝑓𝑡
(𝑗)̅̅ ̅̅ ̅

=
𝐹𝑡

𝑝𝑡𝑓,(𝑗)

𝑙𝑡
𝑝𝑡𝑓  ...... is the average value of 𝑓𝑡

(𝑚),(𝑗)
 

𝐹𝑡
𝑝𝑡𝑓,(𝑗)

= ∑ 𝐹𝑡
(𝑚),(𝑗)

𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)   

𝐹𝑡
𝑝𝑡𝑓,𝑔𝑟

= ∑ 𝐹𝑡
(𝑚),𝑔𝑟

𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)   

∆𝑓𝑡
(𝑚),𝑔𝑟

=
𝑓𝑡+1

(𝑚),𝑔𝑟

1+𝑔𝑟
− 𝑓𝑡

(𝑚),𝑔𝑟
   

(Note that the ∆𝑓𝑡
(𝑚),𝑔𝑟

 represents the saving part of the premium.) 
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𝑝𝑎𝑖𝑑𝑡
(𝑚)

  ..... is the total number of policies that are expected to obtain benefit payments at time 

t related to the policy m; usually it is a sum of number of policies expected to die, 
lapse or mature at time t.  

 

Then the policyholder fund to be paid at the time t for the whole policy portfolio is: 

𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)

= 

= 𝑝𝑎𝑖𝑑𝑡
(1)

∙ [(𝑓0
(1),𝑔𝑟

+ ∆𝑓0
(1),𝑔𝑟

) ∙ 𝐼𝑡 + ∆𝑓1
(1),𝑔𝑟

∙ 𝐼𝑡1 + ∆𝑓2
(1),𝑔𝑟

∙ 𝐼𝑡 + ⋯+ ∆𝑓𝑡−1
(1),𝑔𝑟

∙ 𝐼𝑡𝑡−12 ] + 

+𝑝𝑎𝑖𝑑𝑡
(2)

∙ [(𝑓0
(2),𝑔𝑟

+ ∆𝑓0
(2),𝑔𝑟

) ∙ 𝐼𝑡 + ∆𝑓1
(2),𝑔𝑟

∙ 𝐼𝑡1 + ∆𝑓2
(2),𝑔𝑟

∙ 𝐼𝑡 + ⋯+ ∆𝑓𝑡−1
(2),𝑔𝑟

∙ 𝐼𝑡𝑡−12 ] + ⋯+ 

+𝑝𝑎𝑖𝑑𝑡
(𝑀)

∙ [(𝑓0
(𝑀),𝑔𝑟

+ ∆𝑓0
(𝑀),𝑔𝑟

) ∙ 𝐼𝑡 + ∆𝑓1
(𝑀),𝑔𝑟

∙ 𝐼𝑡1 + ∆𝑓2
(𝑀),𝑔𝑟

∙ 𝐼𝑡 + ⋯+ ∆𝑓𝑡−1
(𝑀),𝑔𝑟

∙ 𝐼𝑡𝑡−12 ] = 

= 𝑝𝑎𝑖𝑑𝑡
(1)

∙ [𝑓0
(1),𝑔𝑟

∙ 𝐼𝑡 + (
𝑓1

(1),𝑔𝑟

1 + 𝑔𝑟
− 𝑓0

(1),𝑔𝑟
) ∙ 𝐼𝑡 + (

𝑓2
(1),𝑔𝑟

1 + 𝑔𝑟
− 𝑓1

(1),𝑔𝑟
) ∙ 𝐼𝑡1 + (

𝑓3
(1),𝑔𝑟

1 + 𝑔𝑟
− 𝑓2

(1),𝑔𝑟
)

∙ 𝐼𝑡 + ⋯+ (
𝑓𝑡

(1),𝑔𝑟

1 + 𝑔𝑟
− 𝑓𝑡−1

(1),𝑔𝑟
) ∙ 𝐼𝑡𝑡−12 ] + 

+𝑝𝑎𝑖𝑑𝑡
(2)

∙ [𝑓0
(2),𝑔𝑟

∙ 𝐼𝑡 + (
𝑓1

(2),𝑔𝑟

1 + 𝑔𝑟
− 𝑓0

(2),𝑔𝑟
) ∙ 𝐼𝑡 + (

𝑓2
(2),𝑔𝑟

1 + 𝑔𝑟
− 𝑓1

(2),𝑔𝑟
) ∙ 𝐼𝑡1 + (

𝑓3
(2),𝑔𝑟

1 + 𝑔𝑟
− 𝑓2

(2),𝑔𝑟
)

∙ 𝐼𝑡 + ⋯+ (
𝑓𝑡

(2),𝑔𝑟

1 + 𝑔𝑟
− 𝑓𝑡−1

(2),𝑔𝑟
) ∙ 𝐼𝑡𝑡−12 ] + ⋯+ 

+𝑝𝑎𝑖𝑑𝑡
(𝑀)

∙ [𝑓0
(𝑀),𝑔𝑟

∙ 𝐼𝑡 + (
𝑓1

(𝑀),𝑔𝑟

1 + 𝑔𝑟
− 𝑓0

(𝑀),𝑔𝑟
) ∙ 𝐼𝑡 + (

𝑓2
(𝑀),𝑔𝑟

1 + 𝑔𝑟
− 𝑓1

(𝑀),𝑔𝑟
) ∙ 𝐼𝑡1

+ (
𝑓3

(𝑀),𝑔𝑟

1 + 𝑔𝑟
− 𝑓2

(𝑀),𝑔𝑟
) ∙ 𝐼𝑡 + ⋯+ (

𝑓𝑡
(𝑀),𝑔𝑟

1 + 𝑔𝑟
− 𝑓𝑡−1

(𝑀),𝑔𝑟
) ∙ 𝐼𝑡𝑡−12 ] = 

= 𝑝𝑎𝑖𝑑𝑡
(1)

∙ [𝐼𝑡 ∙ 𝑓1
(1),𝑔𝑟

∙ (
1

1 + 𝑔𝑟
−

1

1 + 𝑖1
) + 𝐼𝑡 ∙ 𝑓2

(1),𝑔𝑟
∙ (

1

1 + 𝑔𝑟
−

1

1 + 𝑖2
)1

+ 𝐼𝑡 ∙ 𝑓3
(1),𝑔𝑟

∙ (
1

1 + 𝑔𝑟
−

1

1 + 𝑖3
)2 + ⋯+ 𝐼𝑡 ∙ 𝑓𝑡

(1),𝑔𝑟
∙

1

1 + 𝑔𝑟𝑡−1 ] + 

+𝑝𝑎𝑖𝑑𝑡
(2)

∙ [𝐼𝑡 ∙ 𝑓1
(2),𝑔𝑟

∙ (
1

1 + 𝑔𝑟
−

1

1 + 𝑖1
) + 𝐼𝑡 ∙ 𝑓2

(2),𝑔𝑟
∙ (

1

1 + 𝑔𝑟
−

1

1 + 𝑖2
)1

+ 𝐼𝑡 ∙ 𝑓3
(2),𝑔𝑟

∙ (
1

1 + 𝑔𝑟
−

1

1 + 𝑖3
)2 + ⋯+ 𝐼𝑡 ∙ 𝑓𝑡

(2),𝑔𝑟
∙

1

1 + 𝑔𝑟𝑡−1 ] + ⋯+ 

+𝑝𝑎𝑖𝑑𝑡
(𝑀)

∙ [𝐼𝑡 ∙ 𝑓1
(𝑀),𝑔𝑟

∙ (
1

1 + 𝑔𝑟
−

1

1 + 𝑖1
) + 𝐼𝑡 ∙ 𝑓2

(𝑀)
, 𝑔𝑟 ∙ (

1

1 + 𝑔𝑟
−

1

1 + 𝑖2
)1

+ 𝐼𝑡 ∙ 𝑓3
(𝑀),𝑔𝑟

∙ (
1

1 + 𝑔𝑟
−

1

1 + 𝑖3
)2 + ⋯+ 𝐼𝑡 ∙ 𝑓𝑡

(𝑀),𝑔𝑟
∙

1

1 + 𝑔𝑟𝑡−1 ] 

Note that: 

 for products with the interest rate guarantee, 𝑖𝑡 ≥ 𝑔𝑟 for any t and therefore (
1

1+𝑔𝑟
−

1

1+𝑖𝑡
) ≥ 0; 

 for unit-linked products with no interest rate guarantee this boundaries do not exist. 
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13) Let us now replace 𝑓𝑡
(𝑚),𝑔𝑟

 with the average value 𝑓𝑡
𝑔𝑟̅̅ ̅̅ ̅. 

It is, we consider that all the policies are the “average” ones. Rewrite the formula for 𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)

 under 

this (at this moment quite strange) assumption and denote it 𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)̂

.  

It is: 

𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)̂

=  

= 𝑝𝑎𝑖𝑑𝑡
(1)

∙ [𝐼𝑡 ∙ 𝑓1
𝑔𝑟̅̅ ̅̅ ̅ ∙ (

1

1 + 𝑔𝑟
−

1

1 + 𝑖1
) + 𝐼𝑡 ∙ 𝑓2

𝑔𝑟̅̅ ̅̅ ̅̅ ∙ (
1

1 + 𝑔𝑟
−

1

1 + 𝑖2
)1

+ 𝐼𝑡 ∙ 𝑓3
𝑔𝑟̅̅ ̅̅ ̅̅ ∙ (

1

1 + 𝑔𝑟
−

1

1 + 𝑖3
)2 + ⋯+ 𝐼𝑡 ∙ 𝑓𝑡

𝑔𝑟̅̅ ̅̅ ̅̅ ∙
1

1 + 𝑔𝑟𝑡−1 ] + 

+𝑝𝑎𝑖𝑑𝑡
(2)

∙ [𝐼𝑡 ∙ 𝑓1
𝑔𝑟̅̅ ̅̅ ̅ ∙ (

1

1 + 𝑔𝑟
−

1

1 + 𝑖1
) + 𝐼𝑡 ∙ 𝑓2

𝑔𝑟̅̅ ̅̅ ̅̅ ∙ (
1

1 + 𝑔𝑟
−

1

1 + 𝑖2
)1

+ 𝐼𝑡 ∙ 𝑓3
𝑔𝑟̅̅ ̅̅ ̅̅ ∙ (

1

1 + 𝑔𝑟
−

1

1 + 𝑖3
)2 + ⋯+ 𝐼𝑡 ∙ 𝑓𝑡

𝑔𝑟̅̅ ̅̅ ̅̅ ∙
1

1 + 𝑔𝑟𝑡−1 ] + ⋯+ 

+𝑝𝑎𝑖𝑑𝑡
(𝑀)

∙ [𝐼𝑡 ∙ 𝑓1
𝑔𝑟̅̅ ̅̅ ̅ ∙ (

1

1 + 𝑔𝑟
−

1

1 + 𝑖1
) + 𝐼𝑡 ∙ 𝑓2

𝑔𝑟̅̅ ̅̅ ̅̅ ∙ (
1

1 + 𝑔𝑟
−

1

1 + 𝑖2
)1

+ 𝐼𝑡 ∙ 𝑓3
𝑔𝑟̅̅ ̅̅ ̅̅ ∙ (

1

1 + 𝑔𝑟
−

1

1 + 𝑖3
)2 + ⋯+ 𝐼𝑡 ∙ 𝑓𝑡

𝑔𝑟̅̅ ̅̅ ̅̅ ∙
1

1 + 𝑔𝑟𝑡−1 ] 

 

Therefore, we obtain the final form: 

𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)̂

= 𝑝𝑎𝑖𝑑𝑡 ∙

[
 
 
 𝐼𝑡 ∙

𝐹1
𝑝𝑡𝑓,𝑔𝑟

𝑙1
𝑝𝑡𝑓 ∙ (

1

1+𝑔𝑟
−

1

1+𝑖1
) + 𝐼𝑡 ∙

𝐹2
𝑝𝑡𝑓,𝑔𝑟

𝑙2
𝑝𝑡𝑓 ∙ (

1

1+𝑔𝑟
−

1

1+𝑖2
)1 + 𝐼𝑡 ∙

𝐹3
𝑝𝑡𝑓,𝑔𝑟

𝑙3
𝑝𝑡𝑓 ∙ (

1

1+𝑔𝑟
−

1

1+𝑖3
)2 + ⋯+

𝐼𝑡 ∙
𝐹𝑡

𝑝𝑡𝑓,𝑔𝑟

𝑙𝑡
∙

1

1+𝑔𝑟𝑡−1 ]
 
 
 
  

  (9) 

where 

𝑝𝑎𝑖𝑑𝑡 = ∑ 𝑝𝑎𝑖𝑑𝑡
(𝑚)

𝑚 (𝑎𝑙𝑙 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠) . 

Note that all the variables in the formula are known at the time t. 

14) Note that (and we are aware of that) the 𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)̂

 given by the formula (9) does not express the fund 

value to be paid at the time t for the whole portfolio considered and the scenario j exactly. It is even 
very likely that it does not fit to the real fund value to be paid at the time t at all.  

However, it does not matter much.  

Remember what were our conditions that should be fulfilled for the variable 𝑉𝑡
(𝑗)

 – the Condition1 

and Condition2 on the page 12. 

It seems (based on real case studies) that 𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)̂

 estimation meets both conditions very well. 
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15) Alternatively, and more practically with the same result, we can derive the 𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)̂

 formula following 

this process: 

𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)̂

= 𝑝𝑎𝑖𝑑𝑡 ∙ 𝑓𝑡
(𝑗)̅̅ ̅̅ ̅

 

𝐹0
𝑝𝑎𝑖𝑑,(𝑗)

= 0
̂

, 𝑓0
(𝑗)̅̅ ̅̅ ̅

=
𝐹0

𝑝𝑡𝑓,(𝑗)

𝑙0
𝑝𝑡𝑓  

𝑓𝑡
(𝑗)̅̅ ̅̅ ̅

= (𝑓𝑡−1
(𝑗)̅̅ ̅̅ ̅

+
𝑓𝑡

𝑔𝑟̅̅ ̅̅ ̅

1 + 𝑔𝑟
− 𝑓𝑡−1

𝑔𝑟̅̅ ̅̅ ̅) ∙ (1 + 𝑖𝑡) = (𝑓𝑡−1
(𝑗)̅̅ ̅̅ ̅

+
𝐹𝑡

𝑔𝑟

𝑙𝑡
𝑝𝑡𝑓

∙ (1 + 𝑔𝑟)
−

𝐹𝑡−1
𝑔𝑟

𝑙𝑡−1
𝑝𝑡𝑓

) ∙ (1 + 𝑖𝑡) 

 

In summary,  

𝐹0
𝑝𝑎𝑖𝑑,(𝑗)

= 0
̂

, 𝑓0
(𝑗)̅̅ ̅̅ ̅

=
𝐹0

𝑝𝑡𝑓,(𝑗)

𝑙0
𝑝𝑡𝑓  

𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)̂

= 𝑝𝑎𝑖𝑑𝑡 ∙ 𝑓𝑡
(𝑗)̅̅ ̅̅ ̅

= 𝑝𝑎𝑖𝑑𝑡 ∙ (𝑓𝑡−1
(𝑗)̅̅ ̅̅ ̅

+
𝐹𝑡

𝑔𝑟

𝑙𝑡∙(1+𝑔𝑟)
−

𝐹𝑡−1
𝑔𝑟

𝑙𝑡−1
) ∙ (1 + 𝑖𝑡) for 𝑡 > 0 (10) 

Where again, all the variables in the formula (10) are known at the time t. 

 

Practical process: 

The real process in practice is the following: 

1) Determine the fictive grid scenarios 𝒊
𝑔𝑘, 𝑘 = 1, 2, … , 𝑧 following the approach as described in the 

point 6) on the page 12.  

Typically, 5 ≤ 𝑧 ≤ 20, usually 𝑧 = 10 showed to us to be the most effective for most of the 

products and still with a very good fit. 

2) Calculate 𝐶𝐹𝑡
𝑝𝑡𝑓,𝑔𝑘  for every grid scenario (𝑘 = 1,2, , … , 𝑧) within the per-policy model. 

3) Calculate 𝐹𝑡
𝑝𝑎𝑖𝑑,𝑔𝑘̂

 for every grid scenarios (𝑘 = 1,2, , … , 𝑧) and every time t using the formula (9) or 

(10) – out of the per-policy model. 

4) Then we have prepared everything for the fast estimation of 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 for any interest rates scenario j 

following this procedure: 

FOR j = 1 to s 

 FOR t = 1 to n  

  1) Calculate 𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)̂

 following the formula (9) or (10) 

2) Find the closest values of 𝐹𝑡
𝑝𝑎𝑖𝑑,𝑔𝑘̂

 from the grid scenarios;  

It is, find k where 𝐹𝑡
𝑝𝑎𝑖𝑑,𝑔𝑘̂

≤ 𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)̂

≤ 𝐹𝑡
𝑝𝑎𝑖𝑑,𝑔𝑘+1̂

. 

3) Calculate ratio 𝑝 =
𝐹𝑡

𝑝𝑎𝑖𝑑,𝑔𝑘+1̂
−𝐹𝑡

𝑝𝑎𝑖𝑑,(𝑗)̂

𝐹𝑡

𝑝𝑎𝑖𝑑,𝑔𝑘+1̂
−𝐹𝑡

𝑝𝑎𝑖𝑑,𝑔𝑘̂  (11) 
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4) Calculate the 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 estimation as: 

𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

=  𝑝 ∙ 𝐶𝐹𝑡
𝑝𝑡𝑓,𝑔𝑘 + (1 − 𝑝) ∙ 𝐶𝐹𝑡

𝑝𝑡𝑓,𝑔𝑘+1. 

 Result of this cycle is the projection of 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 from t = 1 to the final future (t=n) for one specific 

interest rates scenario j. 

Results of this cycle is the 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

projection for s scenarios. 

Practical note - extrapolation 

Note that up to now we have assumed that the set of interest rates scenarios is known from the 

beginning. Based on them, we create the grid scenarios (including the minimum (first) and maximum 

(last) scenarios). 

In practice, this is usually not the case.  

However, a possible solution is: 

a) The range of the possible future interest rates could usually be (at least roughly) estimated.  

For example based on the last periods’ rates or based on some theoretical interest rates scenario 
generator calibrated to the current market situation, etc.  

b) Even, if for some time t and some scenario j the 𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)̂

 is out of interval (𝐹𝑡
𝑝𝑎𝑖𝑑,𝑔1 , 𝐹𝑡

𝑝𝑎𝑖𝑑,𝑔𝑧) from 

the grid scenarios, the proportion p could be calculated by the same (or similar formula) as (11). In 
this case, it represents not the interpolation but extrapolation and 𝑎𝑏𝑠(𝑝) > 1.  

From practical point of view, we recommend not to use just the last two values of 𝐹𝑡
𝑝𝑎𝑖𝑑,𝑔𝑘  from the 

grid scenarios but more (usually three is fine) and use a regression for the extrapolation. The proxy 
results then fit with the per-policy model much better. 

Results: 

Cash flow fit 

The quality of the cash flow fit, i.e. the difference between the 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

 from the approximation and 

the per-policy model showed similar or even better results comparing to the Analytical approach.  

It is, that in our case study, the differences on annual cash flows were in vast majority times and scenarios 

far below 1% each year, even if the tested complex products on extreme interest rates scenarios (from -40% 

to + 60%). 

Present value of the cash flows fit 

PVCF differences in each of the individual scenarios were mostly up to 0.2% (±0.2%) and the average of 

the PVCFs (BEL) from the approximation were very much close to the value from the per-policy model 

(usually <±0.05%). These results we consider as excellent. 



 

18 
 

Correlations 

As mentioned above, we expected that the 𝐹𝑡
𝑝𝑎𝑖𝑑,(𝑗)̂

 will be highly correlated with the 𝐶𝐹𝑡
𝑝𝑡𝑓,(𝑗)

. The 

experimental results confirmed that – in vast majority cases the correlation was higher that 95% (very 

often higher than 99%). 

Acceleration results 

The calculation runtime (in our case study) decreased considerably: 

 for 100 scenarios the Interpolation technique accelerated the runtime 10 times; 

 for 1 000 scenarios, it was 60 times; 

 for 10 000 scenarios, 130 times. 

Conclusion to the Interpolation approach 

We see the Interpolation approach as very powerful and effective.  

It has the following features: 

 replicates the per-policy model cash flows and their present values exceptionally well; 

 runtimes are significantly shorter; 

 the principles of the Interpolation approach are clear and simple, therefore, its implementation is fast; 

This is a significant benefit comparing to Analytical approach. 

 the approach is “universal” in a sense that is does not depend much on the specific product (and its 

complexity). Therefore, the analyst does not need to know all the product details (what on the 

opposite is vital when implementing the Analytical approach). 

Conclusion 

We introduced two techniques that might be used for estimating the cash flows projection for a given 

interest rates scenario with a very good fit to the per-policy model results and with significantly shorter 

runtimes – Analytical and Interpolation approach. 

We believe that both techniques are powerful and effective. 

Especially the Interpolation approach shows excellent results in all the criteria we focused on: 

 excellent fit; 

 much shorter runtime; 

 the approach is very easy and therefore can be understood and implemented within the real 

practice in short period of time. 


